共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
汽车车架的结构优化设计 总被引:14,自引:0,他引:14
这里以有限元结构分析和优化算法相结合为手段,以某型载货车车架为例,先对车架进行拓扑优化获得车架最优拓扑形式,根据车架最优拓扑形式确定横梁的数量及分布位置和纵梁的加强方式,得到车架的概念化设计。然后对横梁和纵梁的截面尺寸进行优化,建立了车架的力学模型,优化参数模型,优化数学模型,有限元模型,采用ANSYS参数化设计语言编制了优化设计程序,用ANSYS软件中的零阶优化方法获得最优设计,计算结果表明该优化设计方法的有效和高效,给出了汽车车架的计算机辅助优化设计的有效方法,该方法可广泛应用于车架的优化设计工程。 相似文献
4.
基于ANSYS的全地形车车架结构优化设计 总被引:3,自引:1,他引:3
全地形车车架结构与其他车辆有所不同,车架结构的轻量化设计成为全地形车设计的主要内容之一.基于ANSYS软件,通过建立车架结构的有限元模型,选择典型工况进行模拟分析,并在此基础上进行结构的优化设计.使车架质量减轻,对比优化前后的分析结果,结合可靠性行驶试验,验证结构优化设计的合理性. 相似文献
5.
6.
运用Hypermesh软件建立了TY型自卸车主副一体式车架的有限元模型,通过稳态力学分析发现该车架存在构件各部位所受应力严重不均衡的现象,并对车架结构进行了优化设计。通过对弯扭工况下车架构件的柔度系数灵敏度和质量灵敏度的计算,并基于灵敏度分析的结果确定优化设计变量,以车架的总质量最小作为优化目标,以车架的强度和刚度作为约束条件进行优化。优化结果表明:在满足车架整体性能要求的前提下,优化后的车架最大应力值明显减小,避免了应力集中现象,并且车架质量减轻了82kg,验证了该优化设计方法的有效性。 相似文献
7.
利用有限元分析软件MSC.Nastran对载重汽车结构进行静强度及动态特性分析,揭示车架应力、变形规律及动力特性.根据分析结果确定了车架改进和优化设计方案. 相似文献
8.
车架的可靠性对摩托车至关重要.本文提出了考虑可靠度、位移、频率和尺寸约束的摩托车架结构优化设计数学模型,并给出了处理可靠度约束的新方法. 相似文献
9.
10.
运用集成功能,构建车架三维模型有限元分析模式,从而有效分析动力学与静力学,探究车架整体结构设计的振动特性及模态参数。经过分析力学相关特性,便可准确的发现设计车架结构中存在的缺陷,并有针对性提出改进和优化的方法,从而实施有限元分析及验证。通过对比与分析改进方案,可以确定工艺要求及约束条件的设计方案。 相似文献
11.
12.
为保证电动汽车车架性能满足要求,开展了基于仿真分析的车架强度分析与优化设计。首先,利用Nastran软件建立某型电动汽车前副车架的有限元模型,依据惯性释放理论,分别计算其在典型、极限工况下的静强度;其次,利用ADAM S软件建立前副车架多体动力学模型,基于nCode Design-life平台和M iner线性累积损伤准则,分析前副车架钣金与焊缝区域的累积疲劳损伤;最后,依据分析结果提出将摆臂安装支架厚度改为2.5 mm,同时增加转向器左右安装点处焊缝区域收尾的优化设计方案,并进行仿真对比分析。结果表明:优化后的前副车架结构性能满足要求,焊缝区域的疲劳损伤值在规定范围内,可为汽车类似结构的性能分析和优化提供参考。 相似文献
13.
用ANSYS有限元分析法对自卸车车架进行了分析,找出了自卸车车架在应用中比较容易出现问题的部位,提出了改进的建议。 相似文献
14.
汽车车架结构的拓扑优化设计 总被引:1,自引:0,他引:1
采用有限元分析和结构拓扑优化设计相结合的方法,依据汽车车架的结构受力特性及其材料的性能要求,建立了优化数学模型.在此基础上,基于弯曲板的应力灵敏度分析和性能指标,构建了应力约束下车架拓扑优化准则.最后,开展了车架结构的仿真设计,并得到了合理的结果. 相似文献
15.
在ANSYS软件环境下对太阳能电动车车架进行了有限元建模、边界约束、加栽、强度计算、模态和响应分析。分析结果为同类车架开发及优化设计提供了技术手段和依据。 相似文献
16.
以某型号道路工程车辆车架为研究对象,在CATIA软件中建立了该车架的3D模型,导入Hypermesh进行网格划分并建立其有限元模型,根据车辆的实际工作情况,构建满载静止和支撑两种工况然后进行强度分析,选择应力与变形较大的工况进一步计算其模态频率。构建以厚度为应变量的响应面模型,基于车架近似模型以车架的总质量和第一阶模态频率作为优化目标,以车架的强度作为约束条件进行多目标优化。优化结果表明:在满足车架整体性能要求的前提下,优化后的车架第一阶模态频率提高了6%,并且车架质量减轻了7%,证实了该优化设计方法的有效性,为后续工程车架的设计提供指导。 相似文献
17.
18.
19.
车架作为汽车起重机的重要承载部件,其承载能力对汽车起重机的整车性能有很大影响。本文以55t汽车起重机车架为研究对象,在SolidWorks中建立参数化模型并导入Workbench中对车架进行有限元分析,计算其极限工况下的应力、变形以及模态。通过参数敏感性分析得到各参数对优化目标的敏感度并确定合理的设计变量。构建以筋板厚度和位置为设计变量的响应面模型,以车架的许用应力为约束条件,基于多目标遗传算法对其进行多目标优化。得到优化结果后对其进行分析确定其合理性。结果表明,优化后的车架满足强度与刚度要求,质量减小了6.3%,第一阶固有频率提高了4.9%。 相似文献
20.
为了解决某SUV在高速时产生的振动与噪声问题,基于前副车架有限元分析模型和自由模态计算对其进行振动特性分析,获取其低阶模态频率及其阵型,分析结果表明其第1阶扭转频率处于发动机激励频率范围之内,将引起前副车架产生共振,从而产生剧烈振动和噪声。基于霍克-吉维斯直接搜索法对前副车架的料厚进行优化设计,得到了各个零部件最优的厚度值,分析结果表明优化之后其前4阶模态频率均有所提高,并且均处于发动机的激励频率范围之外,能够避免发生共振,满足模态设计要求。对前副车架的优化方案进行模态试验,试验结果表明其模态频率及其阵型的测试值与仿真值基本一致。整车道路试验结果表明优化之后前副车架的振动明显减少,最终成功解决了该故障问题。 相似文献