首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用固相法在锂离子电池正极材料LiCoO2表面包覆一层LiFePO4;研究了LiFePO4包覆量对材料性能的影响;采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌.研究结果表明:样品具备LiCoO2的α-NaFeO2型层状结构,但随着包覆量的增加,XRD衍射谱显示样品存在多种杂相;合成的样品电化学性能良好,当LiFePO4的包覆量为1%时,在室温下以0.1C倍率充放电,首次放电比容量达145.9 mA·h/g,纯相LiCoO2放电比容量为146.2 mA·h/g.样品采用1C倍率放电时,首次放电比容量达138.9 mA·h/g,循环性能较好,经过20次循环放电比容量仅衰减4.97%.  相似文献   

2.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

3.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

4.
采用高温固相法合成了锂离子电池正极材料LiFePO4及改性的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料。采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌。结果表明:改性后的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料与LiFePO4一样均为单一的橄榄石结构。以20 mA/g电流密度充放电,LiFe0.9Ni0.1PO4的首次放电容量为140 mA.h/g,较LiFePO4增加了12%;而复合掺杂得到的含碳量为2.8%的LiFe0.9Ni0.1PO4/C材料,首次放电容量达162 mA.h/g,充放电循环30次后放电电容量仍为147 mA.h/g,容量衰减仅为9%。当充放电电流密度提高到80 mA/g时,LiFePO4、LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C的放电容量分别为86、114和140 mA.h/g。改性后的LiFe0.9Ni0.1PO4/C的电化学性能得到了较大的改善。  相似文献   

5.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成原位碳包覆磷酸亚铁锂(LiFePO4/C)复合材料,研究合成温度对材料LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜和拉曼光谱技术对合成产物的晶体结构、表面形貌和碳结构进行表征,通过电化学阻抗谱(EIS)和充放电测试对材料的电化学性能进行测试和分析。结果表明:在600~750℃温度范围内都可合成纯LiFePO4/C复合材料,随着合成温度的升高,材料颗粒尺寸和石墨化程度都将增大;600℃保温8h合成的材料颗粒尺寸为100~500nm,其1C放电比容量达到144.2mA·h/g,5C放电比容量达到119mA·h/g。  相似文献   

6.
以LiH2PO4和FeC2O4.2H2O为原料,聚乙烯醇为碳源,通过机械化学活化辅助固相法合成原位碳包覆的LiFePO4材料;考察合成温度对LiFePO4/C材料晶体结构、物理和电化学性能的影响。结果表明:700℃下处理的产物结晶良好、分布均匀、颗粒细小;在最佳的热处理条件下,热解碳在LiFePO4颗粒表面形成了良好的纳米导电层,LiFePO4/C材料在0.1C、0.5C、1C和2C倍率下放电比容量分别为155.7、150.1、140.1和130 mA.h/g,且材料在0.1~2C范围内充放电都有很平稳的平台,极化小,并具有较高的高倍率(2C)放电比容量和较好的循环性能。  相似文献   

7.
一步固相合成Nb掺杂LiFePO4/C及其电化学性能   总被引:1,自引:4,他引:1  
用廉价的三价铁离子化合物为铁源,以聚丙烯为还原剂和碳源,在一步固相法合成Nb掺杂LiFePO4的同时实现颗粒表面碳导电膜的原位包覆。结果表明:一步固相合成的Nb掺杂LiFePO4/C具有完整的橄榄石型LiFePO4晶体结构和近似球状的颗粒形貌,颗粒尺寸为100~500 nm;聚丙烯分解后在颗粒表面和颗粒之间形成连通的网络状碳膜。电化学测试结果表明,当Nb的掺入量为1.0%(摩尔分数)时具有最好的倍率放电性能和循环性能;在2C充放电时具有130 mA.h/g的放电容量,循环100次容量无衰减,在4C充放电时仍具有105 mA.h/g的放电容量。  相似文献   

8.
采用分步碳包覆法合成LiFePO4/C复合材料。首先,将原料Fe2O3、NH4H2PO4和葡萄糖经过固相反应合成Fe2P2O7/C复合材料,再将Fe2P2O7/C与前驱体Li2CO3、葡萄糖混合,通过二次碳包覆工艺合成LiFePO4/C复合材料,并考察合成温度对LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜、差热-热重分析、电化学阻抗谱(EIS)和充放电测试对材料的性能进行表征。结果表明:以制取的Fe2P2O7/C为前驱体合成的LiFePO4/C复合材料具有较好的物理和电化学性能,材料的振实密度达1.26 g/m3,0.1C放电容量为158.3 mA.h/g,1C初次放电比容量达到140 mA.h/g。  相似文献   

9.
采用环氧树脂为碳源制备树枝状碳芯结构LiFePO4/C复合材料。利用X射线衍射、透射电镜和X射线光电子能谱对复合材料进行分析,采用恒电流充放电和电化学阻抗方法研究试样的倍率性能、循环性能和电化学阻抗。结果表明:树枝状LiFePO4/C复合材料的树干是碳芯结构,由无定形碳芯和包覆在碳芯上的纳米LiFePO4颗粒组成;树枝状碳芯结构LiFePO4/C复合材料在15 mA/g的电流密度下,首次放电容量达到167.4 mA.h/g;当电流密度增大到900 mA/g时,放电容量高达120.8 mA.h/g,经过50次循环后,容量保持率高达99.5%。  相似文献   

10.
碳源和铁源对LiFePO4/C材料的制备及性能的影响   总被引:2,自引:0,他引:2  
采用高温固相法合成LiFePO4/C材料,采用XRD和SEM对该材料性能进行表征.结果表明采用不同原料合成的LiFePO4/C材料都具有规整的橄榄石型结构.原料对比实验表明,葡萄糖为碳源优于碳黑,草酸亚铁优于三价铁源;以葡萄糖为碳源、草酸亚铁为铁源合成的材料形貌规则,分散性好.电化学测试表明,以葡萄糖为碳源、草酸亚铁为铁源得到的LiFePO4/C材料0.1C时首次放电比容量达到152.2 mA·h/g,大电流密度下性能良好,3C时其首次放电比容量为140.8 mA·h/g,20次循环后仅衰减1.2%.  相似文献   

11.
The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and multi-point brunauer emmett and teller(BET) method. The results show that the LiFePO4/C composite with the best network structure is obtained by adding 10% phenolic resin carbon. Its electronic conductivity increases to 2.86 × 10^-2 S/cm. It possesses the highest specific surface area of 115.65 m^2/g, which exhibits the highest discharge specific capacity of 164.33 mA.h/g at C/IO rate and 149.12 mA.h/g at 1 C rate. The discharge capacity is completely recovered when C/10 rate is applied again.  相似文献   

12.
LiFePO4 co-doped with Mg2+ and Co4+ ions was synthesized by a solid state reaction method. The structure and electrochemical properties of the prepared LiFe0.99Mg0.005Co0.005PO4 were investigated by X-ray diffraction (XRD), galvanostatic charge-discharge experiment and cyclic voltammograms (CV). Specific discharge capacity of LiFePO4 co-doped with Mg and Co ions reach 147.2 mA·h/g at 0.1C and 133.3 mA·h/g at 1C. The results of CV show that the reversibility of lithium extraction/insertion in LiFePO4 can be promoted by (Mg2+, Co4+) multiple-ion doping.  相似文献   

13.
MnO2/MnO cathode material with superior Zn2+ storage performance is prepared through a simple physical mixing method. The MnO2/MnO nanocomposite with a mixed mass ratio of 12:1 exhibits the highest specific capacity (364.2 mA·h/g at 0.2C), good cycle performance (170.4 mA·h/g after 100 cycles) and excellent rate performance (205.7 mA·h/g at 2C). Analysis of cyclic voltammetry (CV) data at various scan rates shows that both diffusion- controlled insertion behavior and surface capacitive behavior contribute to the Zn2+ storage performance of MnO2/MnO cathodes. And the capacitive behavior contributes more at high discharge rates, due to the short paths of ion diffusion and the rapid transfer of electrons.  相似文献   

14.
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.  相似文献   

15.
To inhibit rapid capacity attenuation of Bi2Mn4O10 anode material in high-energy lithium-ion batteries, a novel high-purity anode composite material Bi2Mn4O10/ECP-N (ECP-N: N-doped Ketjen black) was prepared via an uncomplicated ball milling method. The as-synthesized Bi2Mn4O10/ECP-N composite demonstrated a great reversible specific capacity of 576.2 mA·h/g after 100 cycles at 0.2C with a large capacity retention of 75%. However, the capacity retention of individual Bi2Mn4O10 was only 27%. Even at 3C, a superior rate capacity of 236.1 mA·h/g was retained. Those remarkable electrochemical performances could give the credit to the introduction of ECP-N, which not only effectively improves the specific surface area to buffer volume expansion and enhances conductivity and wettability of composites but also accelerates the ion transfer and the reversible conversion reaction.  相似文献   

16.
Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH-H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.  相似文献   

17.
采用超声波辅助沉淀法制备Cu单掺杂和Cu/Al复合掺杂的纳米Ni(OH)2样品,测试样品的晶相结构、粒径、形貌、振实密度及电化学性能。结果表明,样品均具有α相结构且其平均粒度的分布范围窄,Cu单掺杂的纳米Ni(OH)2呈现不规则形态,而Cu/Al复合掺杂的纳米Ni(OH)2呈准球状且具有更大的振实密度。将纳米样品以8%的比例掺入到商业用微米级球形镍中制成混合电极。充放电和循环伏安测试结果表明,Cu/Al复合掺杂纳米Ni(OH)2的电化学性能优于Cu单掺杂的纳米Ni(OH)2的,前者的放电比容量最高达到330mA·h/g(0.2C),比Cu单掺杂样品的高12mA·h/g,比纯球镍电极的高91mA·h/g。此外,Cu/Al复合掺杂纳米样品的质子扩散系数比Cu单掺杂样品的高52.3%。  相似文献   

18.
以V2O5·nH2O、LiOH·H2O、NH4H2PO4和蔗糖为原料,采用研磨溶胶凝胶技术制备了无定形Li3V2(PO4)3前驱体,再经过焙烧获得具有单斜结构的介孔Li3V2(PO4)3正极材料,并用XRD、SEM、TEM、比表面积和电化学性能测试来表征材料的性能。研究表明,在700°C下焙烧的样品具有良好的介孔结构、最大的比表面积(188cm2/g)和最小的孔径(9.3nm)。在0.2C倍率下,该介孔样品的首次放电容量达155.9mA·h/g,经过50次循环后其容量仍然可达154mA·h/g,表现出非常稳定的放电性能。  相似文献   

19.
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5–5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 °C. The LFP/C microspheres obtained at calcination temperature of 700 °C are composed of numerous particles with sizes of ~20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 m2/g. The specific discharge capacities of the LFP/C obtained at 700 °C are 162.43, 154.35 and 144.03 mA·h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.  相似文献   

20.
Nanosize carbon coated LiFePO4 cathode material was synthesized by in situ polymerization. The as-prepared LiFePO4 cathode material was systematically characterized by X-ray diffraction, thermogravimetric-differential scanning calorimetry, X-ray photo-electron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy techniques. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images revealed that the morphology of the LiFePO4 consists of primary particles (40-50 nm) and agglomerated secondary particles (100-110 nm). Each particle is evenly coated with an amorphous carbon layer, which has a thickness around 3-5 nm. The electrochemical properties were examined by cyclic voltammetry and charge-discharge testing. The as-prepared LiFePO4 can deliver an initial discharge capacity of 145 mAh/g, 150 mAh/g, and 134 mAh/g at 0.2 C, 1 C, and 2 C rates, respectively, and exhibits excellent cycling stability. At a higher C-rate (5 C) a slight capacity loss could be found. However after being charge-discharge at lower C-rates, LiFePO4 can be regenerated and deliver the discharge capacity of 145 mAh/g at 0.2 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号