首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以Si粉为烧结助剂,采用放电等离子烧结工艺,在1600℃/50MPa下制备出了SiC/B4C陶瓷基复合材料。研究了Si添加量和保温时间对B4C基体SPS烧结性能和力学性能的影响。借助X射线衍射和扫描电镜分析了复合材料的物相组成和微观结构。结果表明:Si粉与B4C基体中的C发生反应,生成SiC相。Si粉的添加可以显著提高复合材料的烧结性能和力学性能。当Si添加量为20%时(质量分数,下同),复合材料的维氏硬度和抗弯强度分别可以达到43.46GPa和529.3MPa。致密度的提高以及断裂模式的转变是复合材料力学性能提高的主要原因。  相似文献   

2.
以低压铸造用升液管为研究目的,以Y2O3-Al2O3-Fe2O3为复合烧结助剂,磨切单晶硅废料Si粉和SiC为主料,反应烧结法制备Si3N4/SiC复相陶瓷。研究了Y2O3含量对复合材料结构和力学性能的影响,采用XRD、SEM对复合材料的相组成、微观形貌进行分析。结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量Sialon晶须及未反应的Si。Y2O3含量对复相陶瓷力学性能影响很大,在分析稀土Y2O3作用机理的基础上,得到2.5%Y2O3优化试样的力学性能优良,相对密度达到88%,维氏硬度达到1.1 GPa,常温抗弯强度50 MPa。  相似文献   

3.
基于反应烧结SiC制备出相对密度较高的SiC/B4C复合材料,并探讨原料中C含量对SiC/B4C复合材料物相、显微结构、体积密度、力学性能的影响。结果表明,SiC/B4C复合材料的相组成为B4C、SiC、Si、B13C2和B12.97Si0.03C2。SiC/B4C复合材料的显微组织为:SiC相和B4C相均匀分布,游离Si填充在B4C相和SiC相的空隙处,且形成了连续相。随着原料中C含量的增加,复合材料的力学性能整体呈现先增加后降低的趋势。原料中C最佳添加量为10%(质量分数),对应SiC/B4C复合材料的维氏硬度、抗弯强度和断裂韧性分别为24.4GPa、361.3MPa和4.41MPa·m1/2,复合材料开口气孔率和体积密度分别为0.19%和2.58g/cm3。  相似文献   

4.
通过不同制备工艺能够制备短纤维增强SiC复合材料.利用热压烧结工艺能够制备Cf/SiC复合材料,研究了温度和烧结助剂对Cf/SiC复合材料结构的影响.提高烧结温度,促进了Cf/SiC复合材料致密化,同时纤维的降解损伤加剧;用氧化物作为烧结助剂能够提高纤维与基体的结合能力,同时也促进纤维的降解,非氧化物烧结助剂能够在一定程度上保护纤维,降低纤维的损伤,并且纤维拔出明显.同时还研究了不同烧结方法对纤维结构的影响,利用SPS烧结工艺能够在较低温度的条件下快速制备致密的Cf/SiC复合材料,弱化了纤维与基体的作用,制备过程中能够很好的保护纤维,降低纤维在制备过程中的损伤.  相似文献   

5.
机械合金化+烧结制备TiC/Ti3SiC2复合材料   总被引:1,自引:0,他引:1  
以Ti、Si和C单质粉末为原料,采用机械合金化合成了TiC/Ti3SiC2混合粉体,并用放电等离子烧结球磨粉体制备了致密的TiC/Ti3SiC2陶瓷。结果表明,机械合金化可以合成由TiC和Ti3SiC2组成的混合粉体,同时还可以细化晶粒,促进烧结的致密化过程。在1200℃下,保温5min,加压30MPa,对机械合金化1h时的粉体进行放电等离子烧结可制备相对密度高达99.1%的TiC/Ti3SiC2复合陶瓷。  相似文献   

6.
运用共沉淀法制备Sm2Zr2O7原料粉末,利用放电等离子烧结技术(SPS)制备锆酸钐质量分数分别为25%、50%、75%的Sm2Zr2O7-ZrB2/SiC复合材料,对材料进行相成分、微观形貌、力学性能测试表征。结果表明,采用SPS在1600℃下可制备出高致密度的Sm2Zr2O7-ZrB2/SiC三相复合材料。随着复合材料中Sm2Zr2O7含量的增加力学性能显著降低,主要是Sm2Zr2O7材料本身的力学性能较低,且烧结过程中易形成连续相以及烧结应力共同作用的结果。  相似文献   

7.
围绕Ti-Si-C体系,采用Ti,Si,C,SiC等粉体,利用SPS原位反应烧结制备了一系列Ti-Si-C体系纳米复合材料,主要包括TiC/SiC,Ti5Si3/TiC,Ti5Si3/TiC/Ti3SiC2等纳米复合材料.利用XRD,SEM和TEM分析了复合材料的相组成和显微结构,利用压痕法测定了其室温显微硬度和断裂韧性.结果表明利用SPS技术可在比较低的温度(<1500℃),很短的保温时间(<8 min)下同步完成反应、烧结、致密化,生成Ti-Si-C系纳米复合材料,并且晶粒细小,其中某一相晶粒尺寸小于500 nm.  相似文献   

8.
采用高能球磨和真空烧结技术制备了纳米SiC颗粒弥散增强WC-10Ni硬质合金复合材料,研究了SiC添加量和烧结温度对SiC掺杂WC-10Ni硬质合金复合材料显微组织和室温力学性能的影响。结果表明,采用真空烧结技术于1 450 ℃和1 500 ℃下烧结可获得烧结颗粒结合良好,致密度高达99.2%的WC-10Ni-SiC复合材料。SiC的添加不仅可以抑制WC晶粒的长大,起到细化晶粒的作用,还可促使WC晶粒烧结致密化。而且所获得的复合材料的维氏硬度随着SiC含量的增加而提高,最高达1 649 HV;断裂韧性和抗弯强度随着SiC添加量增加均呈现先升高后降低的趋势,当SiC添加量为0.5wt%时可获得断裂韧性和抗弯强度分别为12.7 MPa.m1/2和1 126.1 MPa的WC-10Ni-SiC硬质合金复合材料。  相似文献   

9.
将平均粒径为75 μm和48 μm、质量分数为0%~8%的Si粉分别添加到SiC陶瓷材料中,在1550℃下保温3 h烧成,研究Si粉粒径及其添加量对SiC陶瓷材料烧结性能、力学性能和显微结构的影响。结果表明:添加不同粒径及质量分数的Si粉可改善SiC陶瓷材料的显微结构,提高其烧结性能和力学性能;在一定范围内,较小粒径的Si粉更有利于形成均匀、致密的SiC烧结体,大幅提升SiC陶瓷材料的性能;当Si粉粒径为48 μm且添加的质量分数为4%时,SiC陶瓷材料的烧结性能和力学性能较优,其体积密度和显气孔率分别为2.58 g/cm3和13.5%,抗弯强度和洛氏硬度分别为25 MPa和115 HRB。   相似文献   

10.
用湿化学方法,通过非均匀成核方式将烧结助剂Al2O3,Y2O3均匀包覆到纳米SiC及Si3N4颗粒表面.经烧结助剂表面包覆修饰后的SiC,Si3N4粉体表现出相似的胶体特性,其等电点IEP分别从pH=3.4,pH=4.4移至pH=8.6,pH=9.2.在pH=7.5时,被覆烧结助剂的SiC,Si3N4颗粒都具有较高的Zeta电位正值,具有良好的分散性.然后,通过胶态悬浮液混合,将纳米SiC均匀分散到Si3N4基体中.从而实现纳米复相陶瓷中各相的均匀混合.实验结果表明,用湿化学方法制备的Si3N4/SiC纳米复相陶瓷材料具有较均匀的显微结构、良好的烧结性能和力学性能.  相似文献   

11.
《Acta Materialia》2007,55(12):4193-4202
Si3N4/Si3N4w/TiN nanocomposites were fabricated by a hot-pressing technology with different sintering processes. The effect of nanoscale TiN and Si3N4w on the mechanical properties was investigated. The microstructure and indention cracks were observed by scanning electron microscopy, transmission electron microscopy and energy-dispersive spectrometry investigations. The research results showed that Si3N4/Si3N4w20/TiN5 nanocomposites containing 5 vol.% of nanoscale TiN and 20 vol.% of nanoscale Si3N4w, which were sintered under a pressure of 30 MPa at a temperature of 1650 °C for 40 min, had optimum mechanical properties. The addition of both nanoscale TiN and nanoscale Si3N4w contributed to the microstructural evolution and an improvement of the mechanical properties. The toughening and strengthening mechanisms are discussed for Si3N4/Si3N4w20/TiN5 nanocomposites.  相似文献   

12.
Si3N4-TiN nano-composites were fabricated by hot press sintering nano-sized Si3N4 and TiN powders. The microstructure, mechanical properties and thermal shock behavior of Si3N4-TiN nano-composites were investigated. The addition of proper amount TiN particles can significantly increase the flexural strength and the fracture toughness. Si3N4-TiN nano-composites showed both higher critical temperature difference and higher residual strength compared with those of monolithic silicon nitride nano-ceramic when the amount of TiN is less than 15 wt.%. But a further increase in the amount of TiN leaded to a decrease in the thermal shock resistance.  相似文献   

13.
SiC/MoSi2 composites were synthesized at different temperatures by spark plasma sintering using Mo, Si and SiC powders as raw materials. The phase composition, microstructure and mechanical properties of the as-prepared composites were investigated and the sintering behavior was also discussed. Results show that SiC/MoSi2 composites are composed of MoSi2, SiC and trace amount of Mo4.8Si3C0.6 phase and exhibit a fine-grain texture. During the synthesis process, there was an evolution from solid phase sintering to liquid phase sintering. When sintered at 1600 °C, the SiC/MoSi2 composites present the most favorable mechanical properties, the Vickers hardness, bending strength and fracture toughness are 13.4 GPa, 674 MPa and 5.1 MPa·m1/2, respectively, higher 44%, 171%, 82% than those of monolithic MoSi2. SiC can withstand the applied stress as hard phase and retard the rapid propagation of cracks as second phase, which are beneficial to the improved mechanical properties of SiC/MoSi2 composites.  相似文献   

14.
TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and Al2O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m½) values of Si3N4-based ceramics could be achieved at 1550°C. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.  相似文献   

15.
Al2O3/5%SiC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of Al2O3 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, Al2O3/SiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed Al2O3/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the Al2O3/5%SiC nanocomposites by pressureless sintering and post HIP process.  相似文献   

16.
In the present work, the α/β Si3N4 ceramics were fabricated by spark plasma sintering (SPS) at 1400-1500 °C for 6 min with 3wt.%MgO + 5wt.%Al2O3 and 3wt.%MgO + 5wt.%Y2O3 as sintering additives. The results showed that the phase composition, microstructure and mechanical properties of α/β Si3N4 ceramics were highly dependent on the type of sintering additive. The incomplete phase transformation from α to β occurred in the presence of an oxynitride (Mg-Al(Y)-Si-O-N) liquid phase. Compared with MgO-Al2O3, MgO-Y2O3 can significantly improve the β conversion rate of as-sintered α/β Si3N4 ceramics. And the as-sintered ceramics using MgO + Al2O3 as sintering additives had higher mechanical properties.  相似文献   

17.
In response to a need for improving the mechanical properties of optically transparent ceramics, the nanocomposites approach is used to strengthen transparent magnesium-aluminate spinel with Si3N4 nanodispersoids. The as-processed nanocomposites are found to be >70% transparent in the critical infrared wavelength range of 3-4.5 μm. Mie scattering combined with absorption by the Si3N4 nanodispersoids explains quantitatively the IR transmission behavior of these nanocomposites. The nanocomposites are also found to be transparent in the visible region. Upon heat treatment (1000 °C for 4 h in air), the optical properties of the nanocomposites remain unchanged. However, the heat treatment results in a 29% increase in the average strength, accompanied by almost doubling of the Weibull modulus, and an 85% increase in the indentation toughness. The improvements in mechanical properties after the heat treatment in these nanocomposites are explained qualitatively, based on generally accepted arguments involving surface-oxidation-induced surface compression and flaw-healing. While further work is needed to fully understand and exploit these effects, this first report on transparent nanocomposites could have broad implications for the creation of mechanically robust, transparent ceramics of the future.  相似文献   

18.
In the present work, the influence of the isothermal holding time on the physical (relative density and mass loss), chemical (α–β transformation and intergranular phase crystallization) and mechanical (hardness and fracture toughness) properties of Si3N4 ceramics with Al2O3 and CTR2O3 as additives has been studied. CTR2O3 is a natural rare earth oxide mixture, produced at DEMAR-FAENQUIL from the mineral xenotime, consisting mainly of Y2O3, Yb2O3, Er2O3 and Dy2O3. The increase in hardness and fracture toughness with increasing duration of isothermal sintering is discussed in regard of densification, α–β Si3N4 phase transformation and microstructure. The microstructural variations were decisive for the increase of fracture toughness, because larger grains (>4 μm) with higher aspect ratios (>6) developed during increased sinter periods, enhancing crack deflection and crack-bridging mechanism. In this way longer isothermal holding times contribute to the improvement of the physical and mechanical properties of silicon nitride based ceramics.  相似文献   

19.
The early finding of Veprek and Reiprich that the maximum hardness in the nc-TiN/Si3N4 nanocomposites is achieved at about one monolayer of the interfacial Si3N4 has been confirmed for a number of different nc-MenN/XxNm systems (Me = Ti, W, V, (TiAl)N,…; X = Si, B). More recently, this has been confirmed experimentally for TiN-Si3N4 heterostructures and by first principle density functional theory calculations. We present a consistent understanding of the formation of the nanocomposites with one monolayer Si3N4 interface by spinodal phase segregation. This interface is energetically stabilized as compared to bulk Si3N4, which results in an enhanced bond strength and corresponding cohesion energy. Such an enhancement appears to be of a general validity in nano-sized solids with well-ordered interfaces. The paper concludes a brief summary of the recent progress of the understanding of the mechanical properties of these nanocomposites.  相似文献   

20.
The Si3N4-BN composites have been prepared via die pressing and the precursor infiltration and pyrolysis route using borazine as the precursor. The Si3N4-BN composites are composed of h-BN, α-Si3N4, and β-Si3N4 produced at a pyrolysis temperature from 1200 to 1750 °C with only 0.17-3.9 wt.% phase transition of Si3N4. The effect of pyrolysis temperature on properties of the composites has been investigated. The density and mechanical properties of the composites, at both room temperature and 1000 °C, increase along with the elevating of the pyrolysis temperature. The density of the composites achieves 2.33 g/cm3 at 1750 °C with the porosity of 14.1%. The flexural strength, elastic modulus, and fracture toughness at room temperature of the Si3N4-BN composites pyrolyzed at 1750 °C are 219.1 MPa, 75.5 GPa, and 2.62 MPa m1/2, respectively. A desirable flexural strength of 184.9 MPa with a residual ratio of 84.4% has been obtained when the composites are exposed at 1000 °C in the air. Micrographs of SEM and TEM illustrate the bonding structure of the pyrolysis BN and Si3N4 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号