首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new architecture for serial access memory is described that enables a static random access memory (SRAM) to operate in a serial access mode. The design target is to access all memory address serially from any starting address with an access time of less than 10 ns. This can be done by all initializing procedure and three new circuit techniques. The initializing procedure is introduced to start the serial operation at an arbitrary memory address. Three circuit techniques eliminate extra delay time caused by an internal addressing of column lines, sense amplifiers, word lines, and memory cell blocks. This architecture was successfully implemented in a 4-Mb CMOS SRAM using a 0.6 μm CMOS process technology. The measured serial access time was 8 ns at a single power supply voltage of 3.3 V  相似文献   

2.
A high-speed BiCMOS ECL (emitter coupled logic) interface SRAM (static RAM) architecture is described. To obtain high-speed operation for scaled-down devices, such as MOSFETs with a feature size of 0.8 μm or less and with a small MOS level, a new SRAM architecture featuring all-bipolar peripheral circuits and CMOS memory cells with VSS generator has been developed. Two key circuits, a VSS generator and a current switch level converter, are described in detail. These circuits reduce the external supply voltage to the internal MOS level, thus permitting high-speed SRAM operation. To demonstrate the effectiveness of the concept, a 256 kb SRAM with an address access time of 5 ns is described  相似文献   

3.
A 16-Mb CMOS SRAM using 0.4-μm CMOS technology has been developed. This SRAM features common-centroid-geometry (CCG) layout sense amplifiers which shorten the access time by 2.4 ns. A flexible redundancy technique achieves high efficiency without any access penalty. A memory cell with stacked capacitors is fabricated for high soft-error immunity. A 16-Mb SRAM with a chip size of 215 mm2 is fabricated and an address access time of 12.5 ns has been achieved  相似文献   

4.
A 7-ns 140-mW 1-Mb CMOS SRAM was developed to provide fast access and low power dissipation by using high-speed circuits for a 3-V power supply: a current-sense amplifier and pre-output buffer. The current-sense amplifier shows three times the gain of a conventional voltage-sense amplifier and saves 60% of power dissipation while maintaining a very short sensing delay. The pre-output buffer reduces output delays by 0.5 ns to 0.75 ns. The 6.6-μm2 high-density memory cell uses a parallel transistor layout and phase-shifting photolithography. The critical charge that brings about soft error in a memory cell can be drastically increased by adjusting the resistances of poly-PMOS gate electrodes. This can be done without increasing process complexity or memory cell area. The 1-Mb SRAM was fabricated using 0.3-μm CMOS quadrupole-poly and double-metal technology. The chip measures 3.96 mm×7.4 mm (29 mm2)  相似文献   

5.
A 1-Mb (128 K×8-bit) CMOS static RAM (SRAM) with high-resistivity load cell has been developed with 0.8-μm CMOS process technology. Standby power is 25 μW, active power 80 mW at 1-MHz WRITE operation, and access time 46 ns. The SRAM uses a PMOS bit-line DC load to reduce power dissipation in the WRITE cycle, and has a four-block access mode to reduce the testing time. A small 4.8×8.5-μm2 cell has been realized by triple-polysilicon layers. The grounded second polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size is 7.6×12.4 mm2  相似文献   

6.
A cache DRAM which consists of a dynamic RAM (DRAM) as main memory and a static RAM (SRAM) as cache memory is proposed. An error checking and correcting (ECC) scheme utilizing the wide internal data bus is also proposed. It is constructed to be suitable for a four-way set associated cache scheme with more than a 90% hit rate estimated to be obtained. An experimental cache DRAM with 1-Mb DRAM and 8-kb SRAM has been fabricated using a 1.2-μm, triple-polysilicon, single-metal CMOS process. A SRAM access time of 12 ns and a DRAM access time of 80 ns, including an ECC time of 12 ns, have been obtained. Accordingly, an average access time of 20 ns is expected under the condition that the hit rate is 90%. The cache DRAM has a high-speed data mapping capability and high reliability suitable for low-end workstations and personal computers  相似文献   

7.
The authors introduce a two-port BiCMOS static random-access memory (SRAM) cell that combines ECL-level word-line voltage swings and emitter-follower bit-line coupling with a static CMOS latch for data storage. With this cell, referred to as a CMOS storage emitter access cell, it is possible to achieve access times comparable to those of high-speed bipolar SRAMs while preserving the high density and low power of CMOS memory arrays. The memory can be read and written simultaneously and is therefore well-suited to applications such as high-speed caches and video memories. A read access time of 3.8 ns at a power dissipation of 520 mW has been achieved in an experimental 4K×1-bit two-port memory integrated in a 1.5-μm 5-GHz BiCMOS technology. The access time in this prototype design is nearly temperature-insensitive, increasing to only 4 ns at a case temperature of 100°C  相似文献   

8.
在集成电路设计制造水平不断提高的今天,SRAM存储器不断朝着大容量、高速度、低功耗的方向发展。文章提出了一款异步256kB(256k×1)SRAM的设计,该存储器采用了六管CMOS存储单元、锁存器型灵敏放大器、ATD电路,采用0.5μm体硅CMOS工艺,数据存取时间为12ns。  相似文献   

9.
A highly flexible memory generation system that produces high-density synchronous single- or dual-port static memories has been developed using a 0.7-μm Leff CMOS technology. The fully diffused memories are embedded into a gate-array environment. Configurations upwards of 1K words×256 b and 16K words×16 b have been obtained. Single-port address access times are, for example, 6.2 ns for 8K and 6.9 ns for 32K SRAMs. The Memorist SRAM Compiler provides for accurate timing characterization and is tightly integrated into an ASIC design CAD system. A gate-array-based test-chip cluster consisting of four 7.3×7.3 mm dies with 16 embedded diffused memories has also been developed  相似文献   

10.
The authors describe a high-speed DRAM (HSDRAM), designed primarily for high performance, while retaining the density advantage of the one-transistor DRAM cell. The 128-kb×4, 78-mm2 chip shows a random access time of 20 ns and a column access time of 7.5 ns, measured at 5.0 V, 25°C, and 50-pF load. A 256-b×4 high-speed page mode is provided which has 12-ns cycle into 60 pF, resulting in a data rate of 330 Mb/s. Additional measurements on HSDRAM further demonstrate that DRAM operation in a high-speed regime is not precluded by noise, power, wiring delay, and soft error rate. The device is implemented in a 1.0 μm n-well CMOS process  相似文献   

11.
A 1-Mbit CMOS static RAM (SRAM) with a typical address access time of 9 ns has been developed. A high-speed sense amplifier circuit, consisting of a three-stage PMOS cross-coupled sense amplifier with a CMOS preamplifier, is the key to the fast access time. A parallel-word-access redundancy architecture, which causes no access time penalty, was also incorporated. A polysilicon PMOS load memory cell, which had a large on-current-to-off-current ratio, gave a much lower soft-error rate than a conventional high-resistance polysilicon load cell. The 1-Mbit SRAM, fabricated using a half-micrometer, triple-poly, and double-metal CMOS technology, operated at a single supply voltage of 5 V. An on-chip power supply converter was incorporated in the SRAM to supply a partial internal supply voltage of 4 V to the high-performance half-micrometer MOS transistors.<>  相似文献   

12.
A 1-Mb (256 K×4 b) CMOS static random-access memory with a high-resistivity load cell was developed with 0.7-μm CMOS process technology. This SRAM achieved a high-speed access of 18 ns. The SRAM uses a three-phase back-bias generator, a bus level-equalizing circuit and a four-stage sense amplifier. A small 4.8×8.5-μm2 cell was realized by the use of a triple-polysilicon structure. The grounded second-polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size measures 7.5×12 mm2  相似文献   

13.
设计了一种深亚微米 ,单片集成的 5 1 2 K( 1 6K× 32位 )高速静态存储器 ( SRAM)。该存储器可以作为IP核集成在片上系统中。存储器采用六管 CMOS存储单元、锁存器型敏感放大器和高速译码电路 ,以期达到最快的存取时间。该存储器用 0 .2 5μm五层金属单层多晶 N阱 CMOS工艺实现 ,芯片大小为 4.8mm× 3.8mm。测试结果表明 ,在 1 0 MHz的工作频率下 ,存储器的存取时间为 8ns,工作电流 7m A。  相似文献   

14.
While an ECL-CMOS SRAM can achieve both ultra high speed and high density, it consumes a lot of power and cannot be applied to low power supply voltage applications. This paper describes an NTL (Non Threshold Logic)-CMOS SRAM macro that consists of a PMOS access transistor CMOS memory cell, an NTL decoder with an on-chip voltage generator, and an automatic bit line signal voltage swing controller. A 32 Kb SRAM macro, which achieves a 1 ns access time at 2.5 V power supply and consumes a mere 1 W, has been developed on a 0.4 μm BiCMOS technology  相似文献   

15.
A family of modular memories with a built-in self-test interface designed using a synchronous self-timed architecture is described. This approach is ideally suited to modular memories embedded within synchronous systems due to its simple boundary specification, excellent speed/power performance, and ease of modelling. The basic port design is self-contained and extensible to any number of ports sharing access to a common-core cell array. The same design has been used to implement modular one-, two-, and four-part SRAMs and a one-port DRAM based on a four-transistor (4-T) cell. The latter provides a 45% core cell density improvement over the one-port SRAM. Nominal access and cycle times of 5.5 ns for 64 kb blocks have been shown for a 0.8 μm BiCMOS process with no memory process enhancements. System operation at 100 MHz has been demonstrated on a broadband time-switch chip containing 96 kb of two-port SRAM  相似文献   

16.
A 256 K (32 K×8) CMOS static RAM (SRAM) which achieves an access time of 7.5 ns and 50-mA active current at 50-MHz operation is described. A 32-block architecture is used to achieve high-speed access and low power dissipation. To achieve faster access time, a double-activated-pulse circuit which generates the word-line-enable pulse and the sense-amplifier-enable pulse has been developed. The data-output reset circuit reduces the transition time and the noise generated by the output buffer. A self-aligned contact technology reduces the diffused region capacitance. This RAM has been fabricated in a twin-tub CMOS 0.8-μm technology with double-level polysilicon (the first level is polycide) and double-level metal. The memory cell size is 6.0×11.0 μm2 and the chip size is 4.38×9.47 mm 2  相似文献   

17.
We have developed two schemes for improving access speed and reliability of a loadless four-transistor (LL4T) SRAM cell: a dual-layered twisted bitline scheme, which reduces coupling capacitance between adjacent bitlines in order to achieve highspeed READ/WRITE operations, and a triple-well shield, which protects the memory cell from substrate noise and alpha particles. We incorporated these schemes in a high-performance 0.18-μm-generation CMOS technology and fabricated a 16-Mb SRAM macro with a 2.18-μm2 memory cell. The macro size of the LL4T-SRAM is 56 mm2, which is 30% to 40% smaller than a conventional six-transistor SRAM when compared with the same access speed. The developed macro functions at 500 MHz and has an access time of 2.0 ns. The standby current has been reduced to 25 μA/Mb with a low-leakage nMOSFET in the memory cell  相似文献   

18.
An advanced TFT memory cell technology has been developed for making high-density and high-speed SRAM cells. The cell is fabricated using a phase-shift lithography that enables patterns with spaces of less than 0.25 μm to be made using the conventional stepper. Cell area is also reduced by using a small cell-ratio and a parallel layout for the transistor. Despite the small cell-ratio, stable operation is assured by using advanced polysilicon PMOS TFT's for load devices. The effect of the Si3N4 multilayer gate insulator on the on-current and the influence of the channel implantation are also investigated. To obtain stable operation and extremely low stand-by power dissipation, a self-aligned offset structure for the polysilicon PMOS TFT is proposed and demonstrated. A leakage current of only 2 fA/cell and an on-/off-current ratio of 4.6×106 are achieved with this polysilicon PMOS TFT in a memory cell, which is demonstrated in a experimental 1-Mbit CMOS SRAM chip that has an access time of only 7 ns  相似文献   

19.
This paper describes newly developed magnetic random access memory (MRAM) cell technology suitable for high-speed memory macros embedded in next-generation system LSIs: a two-transistor one-magnetic tunneling junction (2T1MTJ) cell structure, a write-line-inserted MTJ, and a 5T2MTJ cell structure. The 2T1MTJ cell structure makes it possible to significantly improve the write margin and accelerate the operating speed to 200 MHz. Its high compatibility with SRAM specifications and its wide write margin were confirmed by measuring 2T1MTJ MRAM test chips. Although the cell structure requires a small-writing-current MTJ, the current can be reduced to 1mA using the newly developed write-line-inserted MTJ. Further development to reduce the current down to 0.5 mA is required to obtain a cell area of 1.9 mum2, which is smaller than the SRAM cell area, in the 0.13-mum CMOS process. The 5T2MTJ cell structure also enables random-access operation over 500 MHz because the sensing signal is amplified in each cell. Random access time of less than 2 ns can be achieved with SPICE simulation when the magnetic resistance is 5 kOmega and the magnetoresistive (MR) ratio is more than 70%  相似文献   

20.
Circuit techniques for a reduced-voltage-amplitude data bus, fast access 16-Mb CMOS SRAM are described. An interdigitated bit-line architecture reduces data bus line length, thus minimizing bus capacitance. A hierarchical sense amplifier consists of 32 local sense amplifiers and a current sense amplifier. The current sense amplifier is used to reduce the data bus voltage amplitude and the sensing of the 16-b data bus signals in parallel. Access time of 15 ns and an active power of 165 mW were achieved in a 16-Mb CMOS SRAM. A split-word-line layout memory cell with double-gate pMOS thin-film transistors (TFTs) keeps the transistor width stable while providing high-stability memory cell characteristics. The double-gate pMOS TFT also increases cell-storage node capacitance and soft-error immunity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号