首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrosilylation of nadic anhydride with tetramethyl disiloxane yielded 5,5′‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboxylic anhydride (I), which further reacted with 4‐aminophenol to give N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide (II). Epoxidation of II with excess epichlorohydrin formed a siloxane‐ and imide‐modified epoxy oligomer (ie diglycidyl ether of N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide) (III). Equivalent ratios of III/I of 1/1 and 1/0.8 were prepared and cured to produce crosslinked materials. Thermal mechanical and dynamic mechanical properties were investigated by TMA and DMA, respectively. It was noted that each of these two materials showed a glass transition temperature (Tg) higher than 160 °C with moderate moduli. The thermal degradation kinetics was studied with dynamic thermogravimetric analysis (TGA) and the estimated apparent activation energies were 111.4 kJ mol?1 (in N2), 117.1 kJ mol?1 (in air) for III/I = 1/0.8, and 149.2 kJ mol?1 (in N2), 147.6 kJ mol?1 (in air) for III/I = 1/1. The white flaky residue of the TGA char was confirmed to be silicon dioxide, which formed a barrier at the surface of the polymer matrix and, in part, accounted for the unique heat resistance of this material. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
A novel siloxane‐imide‐containing polybenzoxazine based on N,N′‐bis(N‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazine)‐5, 5′‐bis(1,1′,3,3′‐tetramethyldisiloxane‐1,3‐diyl)‐bis(norborane‐2,3‐dicarboximide) (BZ‐A1) was successfully synthesized. The thermal properties of BZ‐A1 are superior to those of conventional polybenzoxazines lacking siloxane groups. Polymerized BZ‐A1 possesses extremely low surface free energy (γs = 15.1 mJ m?2) after curing at 230 °C for 1 h. Moreover, the surface free energy of polymerized BZ‐A1 is more stable than conventional bisphenol A‐type polybenzoxazine during thermal curing and annealing processes, indicating that polymerized BZ‐A1 is more suitable for applications requiring low surface free energy materials for high temperatures over long periods of time. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Three 3‐mercaptopropionate thiols, 1,6‐Hexane bis(3‐mercaptopropionate) (HD‐SH), trans‐1,4‐Cyclohexanedimethyl bis(3‐mercaptopropionate) (CHDM‐SH), and 4,4′‐Isopropylidenedicyclohexane bis(3‐mercaptopropionate) (HBPA‐SH) were formulated with 1,3,5‐triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATATO) and photoinitiator. The formulations were photopolymerized via thiol‐ene photopolymerization. A ternary experimental design was employed to elucidate the influence the three thiols on the thermomechanical and coatings properties of thiol‐ene photopolymerizable materials. Tensile strength, tensile modulus, elongation‐to‐break, glass transition temperature (Tg), and crosslink density (XLD) were investigated. Coating properties including pencil hardness, pull‐off adhesion, MEK double rubs, and gloss were also investigated. Relative reaction conversion was determined by photo differential scanning calorimeter (PDSC). Thiol‐ene photopolymerizable materials containing HBPA‐SH resulted in improving tensile strength, tensile modulus, Tg, and pencil hardness but lowering of crosslink density and relative conversion. This was attributed to steric and rigidity of the double cycloaliphatic structure. The inclusion of CHDM‐SH into the systems resulted in the synergistic effect on elongation‐to‐break and pull‐off adhesion. The HD‐SH generally resulted in a diminution of thermomechanical and coating properties, but improved the crosslink density. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The spectral performance, sensitiveness to ignition stimuli and burning rate of bi‐spectral flare formulations based on tetrazole containing fuels, 5‐phenyl‐1H‐tetrazole, 5,5′‐(1,4‐phenylene)bis(1H‐tetrazole) and 5‐(4‐nitro‐phenyl)‐1H‐tetrazole, utilizing potassium perchlorate as the oxidizer, are reported. The formulation based on 5‐(4‐nitro‐phenyl)‐1H‐tetrazole yielded the highest spectral efficiency in the β‐band (44.1 J g−1 sr−1). The formulation based on 5‐phenyl‐1H‐tetrazole gave the highest color ratio (θβ/α=6.8) and was the least sensitive.  相似文献   

5.
Cyclopentadithiophene and benzothiadiazole based donor–acceptor polymers are fast emerging as the most promising class of materials for organic solar cells. Here we report on a series of Cyclopentadithiophene and benzothiadiazole based conjugated polymers, namely poly[4,7‐bis(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene‐2‐yl)benzo[1,2,5]thiadiazole] (P1), poly[4,7‐bis(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene‐2‐yl)benzo[1,2,5]thiadiazole‐alt‐9‐(heptadecan‐9‐yl)‐2,7‐bis(4,4,5,5‐tetramethyl)‐1,3,2‐dioxaborolan‐2‐yl)‐9H‐carbazole] (P2) and poly[4,7‐bis(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene‐2‐yl)benzo[1,2,5]thiadiazole‐alt‐5,11‐bis(2‐hexyldecyl)‐3,9‐bis(4,4,5,5‐tetramethyl)‐1,3,2‐dioxaborolan‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole] (P3), with alternating donor and acceptor units and discuss their photophysical and electrochemical properties. Stille coupling of 2‐tributylstannyl‐4,4‐dioctylcyclopenta[2,1‐b:3,4‐b′]dithiophene with 4,7‐dibromobenzo[1,2,5]thiadiazole generated the alternating donor–acceptor monomer 4,7‐bis(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene‐2‐yl)benzo[1,2,5]thiadiazole (CPDT‐BT‐CPDT). Homopolymer P1 of CPDT‐BT‐CPDT was synthesized by oxidative polymerization using FeCl3. Copolymers P2 and P3 were synthesized by palladium‐catalysed Suzuki polycondensation. The synthesized polymers showed good solubility in common organic solvents, and UV‐visible measurements showed that the absorption maxima of the polymers lie in the range 624 to 670 nm. The energy gaps of these polymers were found to lie in the range 1.29 to 1.50 eV. Gel permeation chromatography measurements against polystyrene standards showed the number‐average molecular weight to be in the range (2.2–6.0) × 104 g mol?1. Thermogravimetric analysis showed the polymers to possess high thermal stability. A preliminary study of photodiode devices prepared using polymers P1, P2 and P3 when blended with the PC71BM electron acceptor found that P2 is the optimum chemical structure for pursuing further device optimization.© 2015 Society of Chemical Industry  相似文献   

6.
By appropriate chemical reaction, different substituents can be selectively attached to the four phenyl rings present in 2,3,4,5‐tetraphenylthiophene (TP) to prepare monomers, namely 2,5‐bis(4‐bromophenyl)‐3,4‐diphenylthiophene (BTP), 2,5‐bis(4‐bromophenyl)‐3,4‐bis[4‐(nonan‐1‐one)phenyl] thiophene (BTP‐N2) and 2,5‐bis(4‐bromophenyl)‐3,4‐bis[4‐(2‐heptyl‐4‐phenylquinoline)phenyl]thiophene (BTP‐Qu2). Three light‐emitting polymers, PTP, PTP‐N2 and PTP‐Qu2, with the common TP backbone were prepared by zero‐valent nickel‐catalyzed polymerization of BTP, BTP‐N2 and BTP‐Qu2 monomers, respectively. The substituent on the 3,4‐phenyl rings of the TP framework has a profound effect on the polymer properties. Without any 3,4‐substituent, the rigid PTP polymer has low solubility in organic solvents. With the flexible nonanoyl substituent, the corresponding polymer, PTP‐N2, has improved solubility but low quantum efficiency (ΦF) due to the carbonyl group which enhances intersystem crossing. With both flexible chain and bulky 4‐phenylquinoline (PQ) ring substituents, PTP‐Qu2 has good solubility and an enhanced ΦF since the introduction of both flexible chain and bulky PQ ring substituents prevents close chain packing. All three polymers exhibit similar emission spectra despite the distinct difference in the absorption pattern of PTP‐Qu2 compared with those of PTP and PTP‐N2. In the case of PTP‐Qu2, there is energy transfer from the PQ pendent ring to the TP backbone and results in emission similar to PTP and PTP‐N2. The TP backbone common in all the three polymers is responsible for the emission from the corresponding excited states. The electrochemical properties of PTP‐Qu2 were also investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
A new series of six imidazolium‐based ionenes containing aromatic amide linkages has been developed. These ionene‐polyamides are all constitutional isomers varying in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) along the polymer backbone. The physical properties as well as the gas separation behaviors of the corresponding membranes have been extensively studied. These ionene‐polyamide membranes show excellent thermal and mechanical stabilities, together with self‐healing and shape memory characteristics. Most importantly, [TC‐API(p)‐Xy][Tf2N] and [IC‐API(m)‐Xy][Tf2N] membranes (TC, terephthaloyl chloride; API, 1‐(3‐aminopropyl)imidazole; Xy, xylyl; Tf2N, bis(trifluoromethylsulfonyl) imide; IC, isophthaloyl chloride), where the amide and xylyl linkages are attached at para and meta positions, exhibit superior selectivity for CO2/CH4 and CO2/N2 gas pairs. We also demonstrate the transport properties and diverse applicability of our newly developed ionene‐polyamides, particularly [TC‐API(p)‐Xy][Tf2N], for various industrial applications. © 2019 Society of Chemical Industry  相似文献   

8.
Two bis‐chalcone derivatives, (2E,6E)‐2,6‐bis[(thiophen‐2‐yl)methylene]cyclohexanone ( C1 ) and (2E,6E)‐2,6‐bis[(furan‐2‐yl)methylene]cyclohexanone ( C2 )‐based electrochromic (EC) nanofibers were produced in the presence of poly(methyl methacrylate) (PMMA) as supporting polymer using the electrospinning technique. The scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy were used to examine morphology and chemical compositions of nanofibers before and after stability test. SEM images of the obtained smooth and bead‐free nanofibers before the stability test showed that both bis‐chalcone derivatives were homogeneously dispersed on the surface of the electrospun nanofibers. Nanofibers of bis‐chalcone derivatives were characterized with Fourier‐transform infrared spectroscopy. The electrochemical and EC properties of these bis‐chalcone derivatives were investigated. The C1 ‐PMMA nanofiber‐based electrochromic device (ECD) showed higher ΔTmax (41.47%) than that of the C2 ‐PMMA nanofiber‐based ECD (4.67%) during coloration/bleaching at 715 nm. The switching times for coloration and bleaching of C1 ‐PMMA nanofiber‐based ECD were found to be 4.42 and 1.12 s, respectively, and the coloration efficiency was 136.18 cm2/C. Repeated cyclic voltammograms and 1000 cycles of chronoamperometric measurements of the bis‐chalcone derivatives indicated that ECDs have long‐term redox stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46010.  相似文献   

9.
A series of 3,5‐bis(benzylidene)‐4‐piperidones 3 were converted into the corresponding 3,5‐bis(benzylidene)‐1‐phosphono‐4‐piperidones 5 via diethyl esters 4 . The analogues in series 4 and 5 displayed marked growth inhibitory properties toward human Molt 4/C8 and CEM T‐lymphocytes as well as murine leukemia L1210 cells. In general, the N‐phosphono compounds 5 , which are more hydrophilic than the analogues in series 3 and 4 , were the most potent cluster of cytotoxins, and, in particular, 3,5‐bis‐(2‐nitrobenzylidene)‐1‐phosphono‐4‐piperidone 5 g had an average IC50 value of 34 nM toward the two T‐lymphocyte cell lines. Four of the compounds displayed potent cytotoxicity toward a panel of nearly 60 human tumor cell lines, and nanomolar IC50 values were observed in a number of cases. The mode of action of 5 g includes the induction of apoptosis and inhibition of cellular respiration. Most of the members of series 4 as well as several analogues in series 5 are potent multi‐drug resistance (MDR) reverting compounds. Various correlations were noted between certain molecular features of series 4 and 5 and cytotoxic properties, affording some guidelines in expanding this study.  相似文献   

10.
Binary copolymerization of 4‐methyl‐1,3‐pentadiene (4MPD) with styrene, butadiene and isoprene promoted by the titanium complex dichloro{1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐bis(2‐phenyl‐2‐propyl)phenoxy]}titanium activated by methylaluminoxane is reported. All the copolymers are obtained in a wide range of composition and the molecular weight distributions obtained from gel permeation chromatographic analysis of the copolymers are coherent with the materials being copolymeric in nature. The copolymer microstructure was fully elucidated by means of 1H NMR and 13C NMR spectroscopy. Differential scanning calorimetry shows an increase of glass transition temperature (Tg) with the amount of 4MPD in the copolymers with butadiene and isoprene, while in the copolymers with styrene Tg is increased on increasing the amount of styrene. © 2016 Society of Chemical Industry  相似文献   

11.
Heteroaromatic 6,6′‐bis[2‐(4‐aminobenzene)benzimidazole] and its corresponding copolyimides were synthesized to produce high temperature resistant polyimides (PIs). Due to the rigidity and aromaticity of heterocyclic bis‐benzimidazole, and the increased hydrogen bonding interactions, these PIs were found to have a high glass transition temperature (Tg) over 457 °C, which also guarantees a better dimensional stability with a coefficient of thermal expansion (CTE) lower than 10 ppm K?1 in a wider temperature range of 50–400 °C. In addition, the PIs exhibit excellent thermal stability (5% weight loss temperature higher than 559 °C) along with outstanding mechanical properties. This study demonstrates the viability to access PIs with ultrahigh Tg and low CTE in a wider range of temperature by the incorporation of bis‐benzimidazole moieties. © 2019 Society of Chemical Industry  相似文献   

12.
A series of thermoplastic poly(imide‐urethane)s (TPIUs), based on 4,4′‐diphenylmethane diisocyanate (MDI) and pyromellitic anhydride (PMDA) as hard segments and poly(tetrahydrofuran) (PTMG) as soft segments, has been prepared by a two‐step polymerization process. The objective of this study is to prepare a type of intrinsically flame‐retardant polyurethane by incorporating PMDA as a flame retardant in the main chains. The thermal behavior and flame retardancies of the TPIUs have been characterized by thermal gravimetric (TG) analysis and limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter tests. The results indicate that the TPIUs display outstanding performance. The temperature at 5% mass loss (T5%) and LOI value increase with the hard‐segment contents, while the total heat released (THR) and peak heat release rate (p‐HRR) show the opposite trend. Furthermore, the T5% of TPIU211 (molar ratio: MDI : PTMG : PMDA = 2 : 1 : 1) is 33.2°C higher than that of the conventional thermoplastic polyurethane TPU211 (molar ratio: MDI : PTMG : 1,4‐butanediol = 2 : 1 : 1), and the THR and p‐HRR of TPIU211 are 14.62% and 64.02% lower than the respective parameters of TPU211. In addition, UL‐94 vertical burning tests show that the TPIUs exhibit excellent antidripping effects. The ultimate tensile strengths of the TPIUs reached 23.1?37.6 MPa with increasing hard segment contents, which meets the requirement of mechanical properties with regard to practical use. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40801.  相似文献   

13.
A series of copolyimide/SiO2 hollow sphere thin films were prepared successfully based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and 9,9‐bis(4‐(4‐aminophenoxy)phenyl)fluorene (molar ratio = 3 : 1) as diamine, and 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) as dianhydride, with different wt % SiO2 hollow sphere powder with particle size 500 nm. Some films possessed excellent dielectric properties, with ultralow dielectric constants of 1.8 at 1 MHz. The structures and properties of the thin films were measured with Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and dynamic mechanical thermal analysis. The polyimide (PI) films exhibited glass‐transition temperatures in the range of 209– 273°C and possessed initial thermal decomposition temperature reaching up to 413–477°C in air and 418–472°C in nitrogen. Meanwhile, the composite films were also exhibited good mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A series of amorphous fluoro‐polyetherimides based on 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and di‐ether‐containing diamines 4,4′‐bis(3‐aminophenoxy)diphenyl sulfone (m‐SED), 4,4′‐bis(4‐aminophenoxy)diphenyl sulfone (p‐SED), 4,4′‐bis(4‐aminophenoxy)diphenyl propane (BPADE) were synthesized. These melt processable polyetherimide polymers from p‐SED and BPADE showed excellent electrical properties. The dielectric constants, 2.74 and 2.65 at 10 MHz respectively, are lower than commercially available polyetherimide ULTEM® 1000, and polyimide Kapton® H films. In addition, we found that trifluoromethyl groups‐containing polyimides not only show extraordinary electrical properties, but they also exhibit excellent long‐term thermo‐oxidative stability and reduced water absorption relative to non‐fluorinated polyimides. The weight retention of these fluoro‐polyetherimides at 315°C for 300 h in air varies from 93% to 98%. Whereas, their moisture absorption at 100 RH at 50°C was in the range of 0.3% to 1.05%, which is much lower than those of Ultem 1000 and Kapton H. In the case of fluoro‐polyetherimides from p‐SED and m‐SED (para and meta isomers) diamines with ‘ether’ and sulfonyl (‐SO2‐) spacer groups, the d‐spacing and Tg values decreased from 4.72Å to 4.56Å and 293°C to 244°C respectively. Similarly, the transparency of these polymer films (in the range of 80% to 90%) at 500 nm solar wavelength was higher than Ultem 1000 and Kapton H.  相似文献   

15.
Michael reactions of β‐keto esters 1a—1h with methyl vinyl ketone ( 2a ) catalyzed by FeCl3 · 6 H2O (5 mol%) proceed with up to 99% yield. Conversion of β‐keto esters 1a—1e derived from chiral alcohols with 2a result in only very low diastereoselectivities (max. de 20%). A bis‐β‐keto ester 1i and a bis‐vinyl ketone 2b — both valuable monomers for poly‐Michael reactions — are synthesized from common starting materials in up to gram quantities.  相似文献   

16.
Three new random conjugated terpolymers based on thiophene‐2,5‐bis((2‐ ethylhexyl)oxy)benzene‐thiophene or thiophene‐2,5‐bis((2‐octyl)oxy)benzene‐ thiophene as electron‐donating units, diketopyrrolopyrrole (DPP) and 4,7‐dithien‐5‐yl‐2,1,3‐benzothiadiazole (DTBT) side group as electron‐withdrawing units have been designed and synthesized by Stille‐coupling reaction. All the terpolymers exhibit good thermal stability, broad absorption in the range of 300 to 800 nm. By tuning the alkyl side chains of the terpolymers, the absorption spectra, HOMO energy levels and photovoltaic properties of the terpolymers changed dramatically. A bulk heterojunction polymer solar cell fabricated from terpolymer GP2 and PC61BM exhibited a promising power conversion efficiency of 3.31% without any processing additives. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42982.  相似文献   

17.
BACKGROUND: Electrical conductivity, photoconductivity, voltage‐controlled negative resistance and thermal properties of copolymers of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid and maleic acid were investigated in order to obtain new organic semiconductors. RESULTS: The room temperature conductivity of three different copolymers was found to be in the range 1.28 × 10?8 ? 1.20 × 10?7 S cm?1. The dark‐ and photo‐current‐voltage characteristics indicate that the copolymers exhibit voltage‐controlled differential negative resistance behaviour. The electrical conductivity of the polymers increases by photo‐illumination, suggesting that the polymers exhibit photoconductivity. The width of the exponential tail in the forbidden band gap of the three polymers was determined via the transient photocurrent technique and E0 values were in the range 34.4–36.49 meV. CONCLUSION: The results suggest that the copolymers could be used as organic semiconductor materials. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

19.
The formation of 4‐alkoxy‐2(5H)‐furanones was achieved via tandem alkoxylation/lactonization of γ‐hydroxy‐α,β‐acetylenic esters catalyzed by 2 mol% of [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold bis(trifluoromethanesulfonyl)imidate [Au(IPr)(NTf2)]. The economic and simple procedure was applied to a series of various secondary propargylic alcohols allowing for yields of desired product of up to 95%. In addition, tertiary propargylic alcohols bearing mostly cyclic substituents were converted into the corresponding spiro derivatives. Both primary and secondary alcohols reacted with propargylic alcohols at moderate temperatures (65–80 °C) in either neat reactions or using 1,2‐dichloroethane as a reaction medium allowing for yields of 23–95%. In contrast to [Au(IPr)(NTf2)], reactions with cationic complexes such as [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine](acetonitrile)gold tetrafluoroborate [Au(IPr)(CH3CN)][BF4] or (μ‐hydroxy)bis{[2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold} tetrafluoroborate or bis(trifluoromethanesulfonyl)imidate – [{Au(IPr)}2(μ‐OH)][X] (X=BF4, NTf2) – mostly stop after the alkoxylation. Analysis of the intermediate proved the exclusive formation of the E‐isomer which allows for the subsequent lactonization.  相似文献   

20.
Micro‐porous propellants containing titanium powder were obtained by supercritical CO2 (SC CO2) foaming technique. The morphologies of the micro‐porous propellants were characterized by scanning electron microscopy (SEM) and energy‐dispersive X‐ray spectroscopy (EDS) measurement. The burning rate, the impetus, and the heat of explosion of the micro‐porous propellants were measured by the closed vessel test and the calorimetric bomb test. The results show that the porosity increased with increasing titanium powder content; compared with Benite, the burning rate was substantially improved, and the maximum values of the impetus and the isochoric heat of explosion increased by 51.4 % and 6.5 %, respectively. The Ti‐containing micro‐porous propellants with rapid burning rate and better energetic properties described in this paper may have the potential to replace Benite as igniter material in a flame igniter of a gun propellant charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号