首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于自适应-模糊控制的六足机器人单腿柔顺控制   总被引:1,自引:0,他引:1  
针对六足机器人在不同环境下进行柔顺控制的问题,提出一种基于自适应-模糊控制算法的腿部柔顺控制策略.在建立六足机器人结构模型和阻抗控制模型的基础上,推导间接自适应控制算法,并通过对该算法参数进行分析,得知该算法并不能满足在复杂环境下机器人脚力控制的要求.根据这一情况提出自适应-模糊控制算法,运用模糊控制算法对自适应控制参数进行修正,根据输入与输出的差异关系实时调整参数以得到满意的系统响应.通过对传统的间接自适应控制和改进后自适应-模糊控制算法的比较分析,结果表明,改进后的算法不仅在环境参数发生变化时能够很好跟随期望接触力,而且在躯体高度波动的情况下依然能够保证较小的接触冲击力和较高的稳态精度.这对于提高六足机器人的适应性有着重要意义.  相似文献   

2.
为满足脑卒中患者早期卧床康复需求,结合临床康复手法与人机工程学,设计了一款卧式康复机器人。该卧式康复机器人可以提供单腿屈髋屈膝运动、卧式步态运动、桥式运动等多种有效的康复动作。为确保训练的安全性以及改善在训练过程中由人机交互作用带来的舒适度和柔顺性差等问题,采用一种基于阻抗模型的柔顺控制方法。将人与机器人之间的交互视为一种虚拟的阻抗模型,即二阶质量-弹簧-阻尼模型,并基于该阻抗模型进行康复机器人的柔顺控制研究。该柔顺控制策略由外环阻抗控制器和内环PID控制器组成,外环的阻抗控制器通过将人机交互力作用在阻抗模型上,实现根据人体意图对运动轨迹进行改变,而内环的PID控制器主要实现对生成的期望轨迹进行稳定跟踪。通过实验证明了基于阻抗模型的卧式康复机器人柔顺控制的有效性。  相似文献   

3.
为解决工业机器人打磨过程中存在复杂时变非线性耦合与不确定性扰动导致机器人柔顺恒力打磨自适应调节能力不足的问题,首先给出了一种可实现沿轴向平移与旋转运动解耦的力控末端执行器,其次设计了一种自抗扰控制器和一种粒子群神经网络变阻抗控制器分别作为内环控制和外环控制,在此基础上,提出了一种机器人自适应变阻抗主动柔顺恒力控制方法,用于在线自适应优化阻抗参数,动态调节打磨力修正量,实现机器人打磨作业自适应主动柔顺恒力控制。最后采用Lyapunov稳定性理论分析证明了所提出方法的闭环稳定性。通过机器人打磨系统虚拟样机联合仿真实验和机器人平台实物实验,验证了所提出方法的有效性。实验结果表明,所提方法能够较好实现静态与动态期望打磨力跟踪,减小了打磨力波动、力超调量以及打磨初期打磨工具处的冲击力,提高了打磨力控制系统抗扰动稳定性、恒力跟踪性能和动态响应能力,对复杂多变工况机器人打磨作业具有较强的适应性与鲁棒性。  相似文献   

4.
工业机器人对工件柔顺打磨作业的适应性差,为此设计机器人柔顺浮动力控末端执行器,基于集成贝叶斯神经网络模型的强化学习,提出主动自适应变阻抗的机器人打磨力控制方法.所提方法根据打磨作业的接触环境信息,利用自助法获取小量数据的多次采样样本,训练集成贝叶斯神经网络模型以描述机器人打磨系统与工况环境交互作用,采用协方差矩阵自适应进化策略(CMA-ES)求解最优阻抗参数.构建机器人打磨系统虚拟样机平台,开展叶片工件的打磨仿真实验,验证所提方法的有效性.实验结果表明,所提方法在十几次训练后,能够将打磨力的绝对跟踪误差减小至较小值,较好地实现了机器人打磨系统的主动自适应变阻抗打磨力控制,提高了机器人打磨力控制的柔顺性和鲁棒性.  相似文献   

5.
当四足机器人行走在不规则的地形中时,会受到意料之外的干扰导致机器人失去平衡。为解决该问题,设计一个应用于18个自由度的四足机器人平衡控制器,在机器人受到外界干扰时能够恢复其平衡;该平衡控制器通过PD控制器计算机器人恢复平衡所需加速度,并据此提出一种四足机器人平衡算法;该算法建立独立关节空间,采用贝塞尔曲线法对机器人足端进行规划。实验结果表明,该算法能够在机器人受到外界干扰时及时调整机器人的主体位置方向来维持平衡。  相似文献   

6.
针对四旋翼无人机执行器部分失效以及遭受外界扰动等问题,提出了一种基于系统输出约束的自适应控制策略,该方法可以实现在时变故障下的姿态跟踪控制问题.结合自适应滑模控制理论和Nussbaum增益函数,设计了一种能够补偿故障损失、适应时变扰动的自适应容错控制器.而且,使用该控制器不需要实时进行故障检测和系统模型的重构.通过严格...  相似文献   

7.
手臂康复机器人阻抗控制实验研究   总被引:1,自引:0,他引:1  
手臂康复机器人是一种用于因偏瘫、外伤等造成手臂运动障碍患者的辅助康复训练机器人,考虑到患者训练的安全性和舒适性,需要机器人有一定的柔顺性.对此,在控制模型中引入阻抗控制.建立并分析了手臂肌力训练模式目标阻抗控制模型,在此基础上进行了简化.建立了基于dSPACE实时仿真平台的半物理仿真实验系统,以回转关节为例,给出了不同控制参数下的力与关节角度曲线,分析了控制参数对控制效果的影响,结果表明控制模型的可行性和有效性.  相似文献   

8.
针对伺服阀控制的、双螺旋副传动的七功能机械手肘关节存在液压系统强非线性、易受外界环境温度和压力变化引起的参数不确定性、外界未知强干扰和仅有位置和油液压力状态反馈的控制特点,提出基于鲁棒观测器的输出反馈鲁棒自适应控制方法.该方法利用反演控制器设计方法对耦合的不确定系统参数和未知状态进行解耦,结合鲁棒观测器和鲁棒自适应控制器设计方法分别对未知状态和不确定参数进行观测和估计,使用李雅普诺夫稳定性理论保证了系统全局渐进稳定的控制性以及系统状态的有界性,解决了同时存在系统参数不确定性和部分未知状态相耦合的鲁棒控制问题.以国家高科技发展计划4 500m深海作业系统的七功能主从液压机械手肘关节作为研究对象,使用提出的控制方法进行在未知外界干扰下的对比研究.实验结果表明,闭环系统可以很好地跟踪参考轨迹,具有较强的鲁棒性,能够获得令人满意的稳态精度和动态性能;修正后的参数自适应律能够保证在外界未知干扰下估计参数的有界性.  相似文献   

9.
针对负电容压电阻尼振动系统中负电容电路参数对振动幅值影响较大且不能适应外界环境变化而自动进行调节的问题,提出了一种主-被动方法,该方法将负电容电路参数调节问题转化到主动控制算法中.首先,针对压电等效电路特点,推导了主-被动方法原理.依据折半搜索算法的思想,阐述了主动控制器参数调节流程.最后,基于dSPACE1104在线仿真系统,使用压电和模拟电路元件,建立了四边固定的压电合金板主-被动振动控制实验平台,对提出的主-被动方法进行了实验研究.实验结果表明:提出的方法能够让负电容控制器的电路参数达到最优,且控制效果在同等条件下优于单独的主动控制或被动控制方法.  相似文献   

10.
多Euler-Lagrange系统抑制抖振分布式有限时间包含控制   总被引:1,自引:0,他引:1  
为了抑制多Euler-Lagrange系统分布式包含控制时控制输出的抖振现象,且实现系统的有限时间收敛,对多EulerLagrange系统的抑制抖振分布式有限时间包含控制方法进行了研究.在系统存在模型不确定性与外界干扰的情形下,采用有限时间滑模控制方法,结合系统的模型特点,提出了分布式有限时间包含控制算法.首先,通过定义包含控制误差变量和选取合适的高阶有限时间滑模变量,设计了一种分布式有限时间包含控制律.为了实现控制器输出的抑制抖振特性,将符号函数项包含在控制律的导数中,经过积分后,可以得到连续的控制输出.针对系统存在的模型不确定性和外界干扰,设计了自适应估计律对其上界进行估计和补偿.基于图论和矩阵理论,利用Lyapunov方法证明了系统能够在有限时间内稳定,且模型不确定性和外界干扰的估计是有效的.最后,选取多机械臂系统作为模型进行了仿真验证.结果表明,所提控制算法对滑模控制中因不连续的切换项产生的抖振现象有很好的抑制作用,且系统可以在有限时间内实现收敛.  相似文献   

11.
为了提升工业机器人装配的精确性与柔顺性,提出适合工业六自由度装配机器人的动态柔顺性控制策略,使之不仅能够实现快速高精度的参考轨迹跟踪,而且能够动态地切换到工件装配时的接触力控制,并能够保持良好的柔顺性接触力.构建机器人关节空间的标准动力学模型,并变换到末端执行器操作空间,获得操作空间的动态特性.给出该控制策略,主要包含参考轨迹给定模块、内环的轨迹跟踪控制器以及动力学参数辨识模块等.采用滑模算法设计轨迹跟踪控制器;采用阻抗滤波器,生成装配作业时末端执行器的期望运动轨迹;采用sigmoid函数设计轨迹跟踪与接触力控制的判别模块;采用最小二乘算法,设计动力学参数辨识模块.采用Lyapunov函数证明了该控制策略的大范围渐进稳定性和收敛性.基于装配实验台上进行现场装配和动态轨迹跟踪的对比性仿真实验研究.仿真实验结果表明:与典型的比例微分(PD)控制相比,动态柔顺性控制能够在较宽广的范围内实现更精确的空间轨迹跟踪和接触力柔性控制,平均相对误差可以有效地控制在-4%到+4%之内.  相似文献   

12.
一类非线性MIMO系统鲁棒自适应神经网络DSC设计   总被引:1,自引:0,他引:1  
为了研究一类多输入多输出强非线性系统的自适应跟踪问题,采用RBF神经网络逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,并将动态面控制与Nussbaum增益技术结合,提出了一种鲁棒自适应神经网络跟踪控制算法.该算法不仅能够解决系统中控制方向完全未知问题和可能存在的控制器奇异值问题,而且能够避免传统后推方法的计算膨胀问题,从而大大降低了控制器的复杂性,使之易于工程实现.同时,该算法保证了闭环系统的稳定性,并具有良好的鲁棒性.仿真结果验证了控制器的有效性.  相似文献   

13.
针对直流微电网中线路阻抗不匹配时,传统下垂控制不能有效实现不同分布式电源之间电流的合理分配的问题,提出了一种基于自适应虚拟阻抗的分布式控制策略。各分布式电源基于一致性算法,利用本地和相邻电源的虚拟阻抗值和电流信息自动调节等效输出虚拟阻抗值,实现了负荷电流的合理分配。同时,在所提控制策略的电压环节增加了电压补偿控制器,通过动态调节下垂控制器的电压参考值,补偿不匹配的馈线阻抗引起的电压偏差。最后,利用MATLAB/Simulink搭建仿真模型,仿真结果验证了所提控制策略的有效性。  相似文献   

14.
为了提升机器人装配作业的精确性和柔顺性,提出改进型自抗扰阻抗控制策略.该策略通过自抗扰控制器生成新期望力来调整机器人末端工具坐标系的位置,实现精确的力跟踪.通过扰动观测器观测环境信息并补偿控制系统的期望力,提高控制系统对环境参数的适应性.引入阻抗模型改进扰动观测器,使观测器的响应速度增大,力跟踪的精度提高.基于六自由度机器人的精密轴孔装配实验结果表明,与传统阻抗控制相比,基于自抗扰控制(ADRC)的阻抗控制能够在较小的接触力误差下完成装配,且基于改进型自抗扰控制的阻抗控制的力平均误差比改进前自抗扰控制减小12.0%~28.2%.  相似文献   

15.
为解决传统机器人柔顺关节存在的振动及控制精度低的问题,利用流体节流原理设计了一个新型变阻尼柔顺驱动关节,以便调节运动过程中系统的动态性能,实现振动抑制。该驱动关节在传统柔顺驱动器的基础上,并联设置一个粘滞阻尼可调模块;通过曲柄滑块机构遮挡液压节流孔的通流面积,从而改变关节系统输入端与输出端之间的阻尼系数;推导变阻尼模块和完整驱动关节的数学模型,给出变阻尼柔顺关节的控制器结构,并进行仿真和实验验证。结果表明:该机器人变阻尼柔顺驱动关节能够在不降低响应速度的情况下减少振动,当取合理阻尼值时关节可在0.5 s内达到稳定值,且响应超调量减少50%以上。  相似文献   

16.
针对汽车半主动悬架模糊控制器的模糊控制规则无法有效调整的问题,建立了两自由度1/4车辆模型.利用白噪声模拟路面激励并作为系统的输入,将人工神经网络与模糊逻辑控制相融合,采用人工神经网络模拟模糊控制过程,实现了模糊规则的自适应调整.将直接控制力作为参考控制力对神经网络进行训练,输出控制力结合开关控制策略实现悬架的半主动控制.仿真分析表明,神经模糊融合网络控制器相对于模糊控制器和被动悬架,使悬架性能得到了显著的改善.  相似文献   

17.
本文提出了一种神经网络自适应方法。该方法采用记忆元网络采用记忆元神经网络进行对象模型辩识,用单个神经元实现了自适应PID控制器。被控对象输出误差经记忆元辩识网络反传后得到控制器的输出误差,以此修正控制器网络权值,由于记忆元网络无需引入延迟算子,能够逼近任意阶线性动态,保证了模型辩识的精度和误差返传的精度,神经元PID控制器具有极为简单的结构与算法,保证了自适应控制的实时性,大量仿真结果表明该方法可  相似文献   

18.
基于人工神经网络方法的机器人位置/力混合控制   总被引:1,自引:0,他引:1  
基于PUMA560工业机器人的第2,3关节设计了位置/力混合控制器。在力控制环建立了基于BP网络的自适应PID控制器,该网络可辩识所接触环境的动力学特性。实验表明,这种位置/力混合控制器经训练后,不仅能对训练样本所代表的环境作出正确响应,而且对介于样本之间的环境有很强的自适应能力。  相似文献   

19.
非线性结构自适应模型逆飞行控制律设计研究   总被引:2,自引:0,他引:2  
文章结合自适应控制、模型参考控制和动态逆控制理论提出了结构自适应模型逆非线性控制系统,设计了飞行控制器.通过李亚普诺夫稳定性定理推导了自适应规律,保证了闭环系统的稳定性.仿真表明该方法对模型参数不准确和外界干扰具有很好的自适应能力,能够满足飞机在过失速机动条件下的控制指令跟踪,且系统具有良好的控制性能及鲁棒性.  相似文献   

20.
飞机动力学模型因受损或者其他未知故障时,预先设计的飞机控制律可能会无法满足飞机的稳定飞行,从而需要设计自适应控制律以保证飞行安全.本文以非线性的NASA-GTM通用飞机模型为对象,运用基于回顾成本的自适应控制方法(RCAC)进行飞机未知故障情况下的平稳飞行控制,包括机体结冰与控制舵面卡死两种故障情况.根据飞机局部线性化模型得到系统马尔科夫参数来设计基于输出反馈的RCAC控制器.通过最优化回顾代价函数来更新RCAC控制器增益,从而调节飞机引擎与控制舵面的输出来补偿由未知故障带来的影响.仿真结果表明在未知故障情况下,RCAC能够很好地通过自适应调整控制器的增益来保证飞机的平稳飞行和控制指令跟踪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号