首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of galactomananns (guar gum and locust bean gum) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) on the dynamic rheological properties of aqueous rice starch dispersions (5%, w/w) was investigated by small‐deformation oscillatory measurements during aging. Magnitudes of storage (G′) and loss (G′′) moduli measured at 4°C before aging increased with the increase in gum concentration in the range of 0.2–0.8%. G′ and G′′ values of rice starch‐locust bean gum (LBG) mixtures, in general, were higher than those of rice starch‐guar gum mixtures. G′ values of rice starch‐guar gum mixtures as a function of aging time (10 h) at 4°C increased rapidly at initial stage and then reached a plateau region at long aging times. However, G′ values of rice starch‐LBG mixtures increased steadily without showing a plateau region. Increasing the guar gum concentration resulted in an increase in plateau values. The rate constant (K) for structure development during aging was described by first‐order kinetics. K values in rice starch‐guar gum mixtures increased with the increase in guar gum concentration. G′ values of rice starch‐galactomannan mixtures after aging were greater than those before aging.  相似文献   

2.
The effect of sucrose at different concentrations (0, 10, 20 and 30%) on rheological properties of rice starch pastes (5% w/w) was investigated in steady and dynamic shear. The steady shear properties of rice starch‐sucrose composites were determined from rheological parameters for power law and Casson flow models. At 25°C all the starch‐sucrose composites exhibited a shear‐thinning flow behavior (n=0.25–0.44). The presence of sucrose resulted in the decrease in consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc). Dynamic frequency sweeps at 25°C indicated that starch‐sucrose composites exhibited weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G′′). G′ and G′′ values decreased with the increase in sucrose concentration. The dynamic (η*) and steady‐shear (ηa) viscosities at various sucrose concentrations did not follow the Cox‐Merz superposition rule. G′ values as a function of aging time (10 h) at 4°C showed a pseudoplateau region at long aging times. In general, the values of G′ and G′′ in rice starch‐sucrose composites were reduced in the presence of sucrose and depended on sucrose concentration.  相似文献   

3.
The effect of galactomannans (guar gum and locust bean gum) at different concentrations (0, 0.2, 0.4 and 0.6%, w/w) on rheological properties of sweet potato starch (SPS) was studied. The flow behaviors of SPS‐galactomannan mixtures were determined from the rheological parameters of power law and Casson models. The SPS‐galactomannan mixtures had high shear‐thinning fluid characteristics (n = 0.30‐0.36) exhibiting yield stress at 25°C. The presence of galactomannans resulted in the increase in consistency index (K), apparent viscosity (ηa,100) and Casson yield stress (σoc). In the temperature range of 25‐70°C, the mixtures followed the Arrhenius temperature relationship. Dynamic rheological tests at 25°C indicated that the SPS‐galactomannan mixtures had weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G") over most of the frequency range (0.63‐62.8 rad/s) with frequency dependency. The magnitudes of dynamic moduli (G′, G" and η*) of the SPS‐galactomannan mixtures were higher than those of the control (0% gum), and increased with an increase in gum concentration. The tan δ (ratio of G"/G′) values (0.41‐0.46) of SPS‐guar gum mixtures were much lower than those (0.50‐0.63) of SPS‐locust bean gum mixtures, indicating that there was a more pronounced effect of guar gum on the elastic properties of SPS.  相似文献   

4.
Rheological properties of fucoidan (F) and buckwheat starch (B) mixtures (3% or 6%) at different blending ratios of fucoidans (0, 0.1, 0.2, 0.5 and 1.0%) were investigated in steady and dynamic shear. Steady shear viscosity measurement revealed that aqueous pastes of the BF blends (3%, w/v) had a pseudoplastic and shear‐thinning behavior with flow behavior index (n) values of 0.61–0.68. The substitution of starch with fucoidan polymers significantly lowered the apparent viscosities compared with the pure starch paste and, when mixed with less than 0.5% of fucoidan, the viscosities of the pastes were even lower than those of the starch pastes at the corresponding starch concentrations. According to dynamic viscoelastic measurement performed at 6% total carbohydrate concentration, buckwheat starch mixtures behaved like weak gels and the BF blends containing less than 0.5% fucoidan had considerably lower storage (G') and loss (G') moduli than the starch paste at the corresponding starch concentrations. However, the magnitude of G' increased with fucoidan concentrations over 0.5%, suggesting that a concentration of fucoidans > 0.5% might enhance the formations of three‐dimensional networks and crosslinking of the starch samples, probably because of the mutual exclusion between starch and fucoidan polymers through the phase separation process. This study indicates that it is possible to obtain the BF blends having various rheological properties by changing the concentration of fucoidan polymers.  相似文献   

5.
The swelling and pasting properties of non‐waxy rice starch‐hydrocolloid mixtures were investigated using commercial and laboratory‐generated hydrocolloids. The swelling power of the rice starch‐hydrocolloid mixtures was generally depressed at low concentration of hydrocolloids (0–0.05%), but increased directly with increasing hydrocolloid concentrations (0.05–0.1%). In gellan gum dispersion, the swelling power at 100°C was higher than that of control. The rice starch‐hydrocolloids mixtures showed shear‐thinning flow behavior (n = 0.26–0.49). Hydrocolloids except the exopolysaccharide from S. chungbukensis (EPS‐CB) increased apparent viscosity and consistency index (K) of rice starch dispersions, but decreased the n value. Hydrocolloids enhanced the trough and final viscosity of rice starch dispersions but EPS‐CB reduced the viscosity of rice starch pastes. Hydrocolloids lowered peak viscosity but addition of guar gum resulted in high peak viscosity, apparent viscosity, and consistency index of rice starch dispersions. Total setback viscosity appeared to be not affected by hydrocolloids at low concentration (0.05%). The hot and cold paste of the starch‐gellan gum mixture exhibited the highest viscosity values in the Brookfield viscometer.  相似文献   

6.
The rheological properties of guar gum (GG) and locust bean gum (LBG), in response to high temperature treatments, were measured using a rheometer equipped with a high pressure cell. This has allowed the viscosity to be assessed at temperatures above 100°C and as the polymer suspension is heated from 20 to 121°C and then cooled back to ambient temperature to simulate a food sterilisation cycle. Activation energies for depolymerisation estimated from viscosity changes with time at a series of constant temperatures were estimated as 63 kJ/mol for GG and 98, 104, 110 kJ/mol for three different samples of LBG. A model was developed to interpret the viscosity change through the simulated sterilisation cycle. This took into account the degradation of the polysaccharide and the change in viscosity due to thermal motion. Estimations of molecular weight changes during the heating process suggest that GG is more susceptible to thermal degradation than LBG. It is suggested that this is due to the greater ability of the latter to associate in solution.  相似文献   

7.
The steady and dynamic shear rheological properties of rice starches dispersed in dimethyl sulfoxide (DMSO) solution (90% DMSO‐10% water) were evaluated at various concentrations (7, 8, 9 and 10%, w/w). Rice starch dispersions in DMSO solution at 25°C showed a shear‐thinning flow behavior (n=0.44–0.60) and their consistency index (K) and apparent viscosity (ηa,100) increased with the increase in concentration. The apparent viscosity over the temperature range of 25–70°C obeyed the Arrhenius temperature relationship, indicating that the magnitudes of activation energy (Ea) were in the range of 11.7–12.7 kJ/mol. The Carreau model provided better fit on the shear rate‐apparent viscosity data than the Cross model. Dynamic frequency sweep test showed that both storage modulus (G′) and loss modulus (G′′) of rice starch dispersions increased with the increase in concentration. G′′ showed a higher dependence on frequency (ω) compared to G′ due to the higher G′′ slopes. All rice starch dispersions showed the plateau of G′ at high frequencies. Intrinsic viscosity of rice starch dispersions in DMSO was 104.1 mL/g.  相似文献   

8.
The steady and dynamic shear rheological properties of hydroxypropylated rice starch pastes (5%, w/w) were evaluated at different molar substitution (MS, 0.030‐0.142). The swelling power (35.5‐52.8 g/g) and solubility (8.19‐10.7%) values of the hydroxyproylated rice starches were higher than those of native rice starch (26.6 g/g and 7.78%) and increased with an increase in MS. The hydroxypropylated starch pastes at 25°C showed a pronounced shear‐thinning behavior (n = 0.33‐0.40) with Casson yield stress (σoc = 15.9‐31.7 Pa). The consistency index (K) and yield stress (σoc) values of the hydroxypropylated starch pastes were lower than those of the native starch, and increased progressively with an increase in MS. The apparent viscosity (ηa,500) obeyed the Arrhenius temperature relationship over the temperature range of 10‐55°C; the activation energies (Ea) of the hydroxypropylated starch pastes were in the range of 14.8‐18.5 kJ/mol, i.e. higher than that (14.1 kJ/mol) of the native starch. Storage (G′) and loss moduli (G′′) of hydroxypropylated starch pastes increased with an increase in MS, while tan δ (G′′/G′) values decreased, indicating that G′ rose more strongly than G′′ with increased MS.  相似文献   

9.
The present study involves the use of non-specific enzyme pullulanase (from Bacillus acidopullulyticus) to remove galactose residues from guar galactomannan to obtain modified guar galactomannan mimicking the functional properties of locust bean gum. The modified guar galactomannan blended with xanthan exhibited the rheological behaviour of elastic modulus (G′) greater than viscous modulus (G″) with a decrease in tan δ value similar to locust bean gum/xanthan blend. Also a twofold increase in the magnitude of elasticity compared to xanthan alone suggested the synergistic interaction with formation of three dimensional networks. The modified guar galactomannan with galactose content of 21% and M:G ratio 1:3.8, almost akin to locust bean gum, showed a better interaction with xanthan. Dynamic stress sweep study of modified guar galactomannan/xanthan blend with increased yield stress of 800 dynes/cm2 also indicated the synergistic behaviour. Modified guar galactomannan also revealed the maximum synergistic interaction with xanthan at a mixing temperature of 60 °C than at 20 °C, 30 °C, 40 °C and 50 °C, respectively. Modification of guar galactomannan by pullulanase is an alternative route to produce galactose-depleted guar galactomannan with enhanced rheological functionalities on co-gelation with xanthan, as a cost effective replacement to locust bean gum.  相似文献   

10.
研究了凉粉草胶在不同质量浓度、温度、pH、盐的种类及盐浓度和不同蔗糖浓度下的流体行为以及固定剪切速率下的表观粘度随不同条件的变化情况。结果表明,凉粉草胶溶液在不同的条件下呈牛顿流体或假塑性流体行为,在剪切速率52.8s-1下,10 g/dL凉粉草胶溶液的表观粘度随胶质量分数(1~20 g/dL)的增加而递增,随温度(25~70℃)的升高而递减,随pH(5~12)的变化则不具有单调性,随NaCl(0~3.0 g/dL)的添加而递减,随CaCl2(0~3.0 g/dL)的添加则先减小后增大,随蔗糖(10~50 g/dL)的添加则递增。  相似文献   

11.
The dynamic rheological properties of blends of rice flour (RF) with six different commercial starches (sweet potato starch, potato starch, tapioca starch, waxy corn starch, hydroxypropylated potato starch, and hydroxypropylated tapioca starch) were evaluated. The magnitudes of storage modulus (G′) of all blend samples were higher than those of loss modulus (G′′) over most of the frequency range (0.63–62.8 rad · s−1). In general, the dynamic moduli results of all blend samples showed that changes in G′ values were relatively greater than changes in G″ values after adding the starches when compared to RF. tan δ (ratio of G′′/G′) values (0.21–0.22) of the RF‐potato starch and RF‐hydroxypropylated potato starch blends were much lower than those (0.25–0.33) of other blends and RF, indicating that there is a more pronounced synergistic effect on the elastic properties of RF‐starch blend systems in the presence of potato starches.  相似文献   

12.
Rheological properties of concentrated solutions of galactomannans, locust bean gum (lb-gum) and guar gum (g-gum), were compared between samples from different manufacturers to examine the effects of prescreening for polysaccharides. The angular frequency dependence curves of the storage and loss moduli were similar in shape between lb-gum samples but were different quantitatively. This results in different values of the molecular weight between entanglements in the molten state (Me,melt) for the lb-gums, although Me,melt is a material constant. On the other hand, Me,melt for g-gum samples agreed with each other. It was demonstrated that the quantitative difference in the rheological properties of lb-gum solutions was attributed to the effective lb-gum concentration in the solutions and that Me,melt is surely a material constant even for these galactomannans. This study confirms that prescreening of samples is very important for polysaccharides to estimate Me,melt.  相似文献   

13.
In this study, emulsion and pasting properties of resistant starch (RS) preparations with/without locust bean gum and their utilization in low fat cookies were investigated. The acid-hydrolysed corn starch sample was autoclaved, stored at 95° C for 0, 2, 3, and 4 days for formation of RS preparations I, II, III, and IV, respectively. RS preparations had significantly lower peak and breakdown and higher trough viscosities than hydrolysed starch. RS preparations with gum resulted in a cold thickening capacity. While native and hydrolysed starches had deteriorative effect on emulsion capacity and stability of the soy protein, RS preparations (with/without gum) did not have a deteriorative effect. Reduction of shortening caused significant decrease in spread ratios of control cookies with/without gum. However, utilization of RS preparations in low fat cookies caused significant increases.  相似文献   

14.
This study investigated the effects of adding guar gum (0, 0.6 and 0.8 g/100 mL) on the physicochemical, microbial, rheological and sensory properties of stirred yoghurt. Incorporation of guar gum into the yoghurt significantly affected the pH and colour, but did not significantly influence the lactic acid bacteria counts. The magnitudes of apparent viscosity (ηa,100), consistency index (K), yield stress (σoc), storage modulus (G′) and loss modulus (G″) for yoghurt samples containing guar gum (0.6–0.8 g/100 mL) were significantly greater than those for the control (without guar gum), indicating that guar gum can improve the steady and dynamic shear rheological properties of yoghurt.  相似文献   

15.
Phosphorylation of rice starch and its effects on the physiochemical properties of the starch were investigated. Phosphorylation was conducted using the oven heating method by heating mixtures of rice starch and monosodium dihydrogenphosphate at 120‐150°C for 0.5‐2 h, and the pasting, flow and rheological properties of the resulting starch phosphates were analyzed. Phosphorylation with substitution degrees of up to 0.12 was achieved by raising the reaction temperature to 140°C, but further increase in the temperature to 150°C caused a marked reduction in the degree of substitution. Phosphorylation resulted in significant declines in pasting temperature and setback, but increases in peak viscosity and breakdown. Suspensions of rice native starch and starch phosphates were shown to be non‐Newtonian, pseudoplastic fluids, exhibiting typical shear thinning. They also exhibited yield stress, the magnitude of which increased with the degree of phosphate substitution. Dynamic testing showed that phosphorylation resulted in a decrease in the temperature at which storage and loss moduli (G′ and G″) reached a peak during heating and a reduction in G′ during cooling. These results appeared to indicate that phosphorylation improved the shear stability of rice starch pastes and enhanced swelling of starch granules, but impeded starch retrogradation.  相似文献   

16.
17.
18.
The effect of the addition of a galactomannan (locust bean gum, LBG, or tara gum, TG) on the microstructure and rheological properties of a globular protein (β-lactoglobulin, β-Lg) solution was studied at pH 7.0, when the protein bears a net negative charge. Confocal laser scanning microscopy was used to explore the microstructure. Steady shear and dynamic oscillatory measurements were performed with a controlled stress rheometer AR2000 (TA Instruments) fitted with a cone-and-plate geometry. Mixtures were prepared with 6.5 wt% β-lactoglobulin concentration and 0.31–0.82 wt% LBG or 0.23–0.71 wt% TG concentration. All mixed systems were two-phase. The microstructure was clearly dependent on the concentration of the galactomannan in the mixture: the systems evolved from a continuous matrix of β-lactoglobulin enriched phase containing some small inclusions of the galactomannan, to a matrix of galactomannan-enriched continuous phase containing aggregates of β-lactoglobulin. Modifications of the flow and viscoelastic properties with respect to the individual components were clearly evidenced for the mixed systems. Phase inversion detected by microscopy could also be detected by rheology as a modification in the flow/viscoelastic behaviour.  相似文献   

19.
Gelatinization and pasting properties of diverse rice types grown in two locations were examined by differential scanning calorimetry (DSC) and rotational rheometry, respectively. The data were compared to previously reported molecular starch properties for these samples: specifically, amylose content, starch molecular weight (Mw), and amylopectin side‐chain‐length distributions. Significant correlations were observed between amylose content, starch Mw, and the weight degree of polymerization of the long side chains of amylopectin F1(DPw) and many of the gelatinization and pasting properties measured. Higher amylose content corresponded with increased gelatinization onset (To) and peak temperatures (Tp), pasting onset and peak temperatures, and decreased peak and trough viscosity. Starch Mw correlated negatively with To, Tp, pasting onset, and peak temperature and positively with peak, trough, final, and breakdown viscosity. Amylopectin with DPw 59‐78 of F1(DPw) correlated with increased To, Tp, pasting onset and peak temperature, and decreased peak, trough, final and breakdown viscosity. Pasting properties were also somewhat related to DPw 21 of shorter side chains of amylopectin (F2(DPw)). Significant correlations between F2(DPw) and peak, final, and breakdown viscosity were observed (r = −0.447*, −0.391*, −0.388*, peak, final, and breakdown viscosity, respectively).  相似文献   

20.
Cassava‐starch based polymer films containing glycerol as a plasticizer (1.0‐2.5‐5.0%, w/w) and different lipids as additives (paraffin, stearyl alcohol, and beeswax – 0.25‐0.5‐1.0%, w/w) were produced. Control films were produced by heating a mixture of glycerol, starch, and water, while treated films were produced by the addition of lipids/ ethanol solutions. The solutions were kept at around 70ºC during amalgamation, and once congealed, were placed in a vacuum oven for 1 h at 90ºC. The solutions were then spun on 7‐inch diameter non‐stick disks, allowed to dry, and conditioned at 23ºC and 50% RH before testing. Cassava starch‐glycerol‐beeswax films were successfully produced with a stable film structure at glycerol concentration equal or below 5% (w/w). Addition of glycerol and beeswax did not visually change the color of the films. Increasing glycerol content improved elongation while decreasing tensile strength. Increasing the glycerol concentration from 1.0 to 5.0% increased the water vapor permeability by 150% and addition of beeswax further increased these values by 250%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号