首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对四旋翼无人机姿态系统难以建立精确模型问题,提出一种基于RBF神经网络的自适应非奇异快速终端滑模控制方法:将系统模型不确定部分及外界扰动之和定义为系统的总扰动,利用RBF神经网络逼近系统的总扰动,将总扰动估计值反馈给控制器,用以补偿系统总扰动的影响。建立无人机姿态系统的模型,设计基于RBF神经网络的自适应非奇异快速终端滑模控制器,根据Lyapunov稳定性定理证明控制系统的稳定性。通过对仿真结果图像和数据分析表明,控制方法能快速逼近的未知模型,有效抑制系统总扰动影响,具有响应速度快、鲁棒性和自适应能力强的特点。  相似文献   

2.
针对自抗扰控制器(activedisturbancerejectioncontroller,ADRC)在扰动剧烈变化时扩张状态观测器(extendedstateobserver,ESO)观测精度降低致系统鲁棒性变差的问题,提出采用径向基(radial basisfunction,RBF)神经网络补偿优化ESO的方法,并将其用在永磁同步电机(permanentmagnet synchronousmotor,PMSM)速度环中。首先根据永磁同步电机d-q轴微分方程组模型设计一阶自抗扰控制器,搭建电机负载转矩观测器用来采集RBF神经网络所需的负载转矩数据,然后利用RBF神经网络对扰动实时辨识的结果对ESO进行实时补偿,并证明了闭环系统的稳定性,最后通过Matlab/Simulink仿真平台进行验证。实验结果表明:在相同条件下和传统ADRC相比,加入RBF神经网络补偿的自抗扰控制器在负载突变时,PMSM系统具有更低的震荡幅度和更快的稳定时间。  相似文献   

3.
为了提高机械臂对给定轨迹的跟踪精度且削弱滑模控制抖振问题,提出了基于RBF神经网络滑模控制的轨迹跟踪方法。建立了多连杆机械臂系统的运动学和动力学模型。首先忽略由建模误差和系统扰动产生的系统不确定项,建立了全局PID滑模控制器,设计了由等效控制律和切换控制律组成的全局滑模控制律;而后使用单隐含层RBF神经网络逼近系统不确定项,使用神经网络对不确定项的逼近值补偿建模误差和系统扰动,达到提高控制精度的目的。经仿真验证,在机械臂初始位置误差较大的情况下,神经网络滑模控制器的调节时间、超调量、驱动力矩抖振远小于全局PID滑模控制器,证明了神经网络滑模控制器在机械臂轨迹跟踪控制中的有效性。  相似文献   

4.
针对永磁同步电机模型预测控制在强扰动下的控制性能降低,及非增量式预测模型存在静态误差等问题,提出一种基于滑模扰动观测器的永磁同步电机转速-电流单环增量式模型预测控制方法。首先,基于永磁同步电机在同步旋转坐标下的数学模型和模型预测控制的原理,设计了转速-电流单环增量式模型预测控制器以消除静态误差。然后,设计电流限幅器,以保证电机工作于电流约束内。最后,设计滑模扰动观测器对负载扰动进行观测,用于前馈补偿控制,并证明观测器的稳定性。仿真结果显示,所设计的观测器能快速、准确地观测到负载转矩的变化,所提出的单环控制器具有良好的动态性能。与传统PI控制及非增量式模型预测控制进行仿真对比,所提方法具有超调小、抗干扰能力强等优点。  相似文献   

5.
为了提高电子节气门在外界扰动和参数不确定情况下的控制精度,提出了模型参考自适应控制与扰动观测器结合的复合控制方法。分析了电子节气门控制系统的工作原理,建立了电子节气门数学模型。以典型二阶系统为参考模型,给出了控制律构造方法,使用Lyapunov稳定性推导了控制律参数的自适应律,因而设计了模型参考自适应控制器。为了消除外界扰动和系统参数不确定性,设计了扰动观测器对扰动和参数进行实时估计。将模型参考自适应控制器与扰动观测器结合,提出了复合控制器的构造方法。经仿真和实验验证,存在外界扰动和参数不确定性时,复合控制器的控制精度和控制速度均优于模型参考自适应控制器,说明了复合控制器在电子节气门控制中的有效性,且复合控制器具有较强的鲁棒性。  相似文献   

6.
针对阀控液压缸位置伺服系统非线性导致模型参数确定困难及干扰问题,在分析三阶位置控制的电液控制系统原理及模型的基础上,引入神经网络的RBF 径向基控制模型和自适应滑模算法,同时考虑了非1负反馈参数,建立了基于RBF 神经网络滑模控制的电液伺服控制系统数学模型。通过选取合适的Lyapunov 函数,分析了系统稳定性,解决了参数未定及挠动情况下的电液伺服系统控制器设计问题。仿真结果证明,所设计的控制器使系统的输出对给定信号的跟踪精度高,响应快,具有较强的鲁棒性。  相似文献   

7.
使用自整定径向基函数(radial basis function,RBF)神经网络PID控制技术,以实现电液比例加载系统的静力加载控制.自整定RBF神经网络PID控制器的设计不需要被控对象的详细模型,且控制参数能够在线调节,从而可以保证不同控制任务下的控制性能.通过仿真,验证了所设计的自整定RBF神经网络PID控制器的正确性和有效性,以及相对于传统PID控制器的优越性.  相似文献   

8.
提出一种基于径向基神经网络(Radial basis function, RBF)的力/位置混合自适应控制方法并用于机器人轨迹跟踪控制,解决机器人柔性末端执行器轨迹跟踪过程中柔性和摩擦力模型难以精确描述的问题。RBF神经网络是一种高效的前馈式神经网络,具有其他前向网络所不具有的非线性逼近性能和全局最优特性,并且网络结构简单,训练速度快。设计一种基于RBF神经网络非线性逼近能力来估计模型中的不确定参数的自适应控制器,给出控制器中神经网络权值更新规则,并证明所设计控制器输出力和位置误差的最终一致有界性。将该控制器应用于风管清扫机器人仿真试验,结果表明该自适应控制器能很好地用于柔性和摩擦力不确定条件下轨迹跟踪控制,与传统自适应控制方法相比具有更精确的跟踪特性和更强的鲁棒性。  相似文献   

9.
针对机械臂末端运动受约束的力/位置控制中无法精确建模、模型具有外界干扰和关节角速度不可测等问题,设计一种基于神经网络观测器的补偿控制系统。首先,通过解耦力和位置控制,得到降阶动态模型。然后,利用神经网络速度观测器对关节速度在线估计,并用神经网络对降阶动力学模型中的不确定项进行逼近补偿滑模控制器。最后,基于Lyapunov稳定性理论证明系统稳定性,并对二连杆机械臂进行仿真。仿真结果表明所设计的控制系统的有效性。  相似文献   

10.
在机械臂轨迹跟踪控制过程中,当利用观测器对模型参数不确定性和外部未知动态扰动进行估计时,估计时间容易受扰动初值的影响,为此基于固定时间扰动观测器设计了一种自适应滑模轨迹跟踪控制方法。利用固定时间观测器的特性,在固定时间内获得机械臂内部模型误差和外部不确定扰动的估计,对扰动估计做出补偿,通过滑模控制策略实现机械臂的轨迹跟踪控制。针对滑模控制伴随抖震的特性,论文对滑模控制器的趋近律进行了抑制抖震的改进设计。通过仿真实验证明:基于固定时间扰动观测器的滑膜控制方法能够在固定时间内准确获取扰动的估计值,能够控制机械臂以高精度跟踪给定轨迹;通过与基于高阶扰动观测器的滑模控制方法进行仿真对比,验证了该方法在消除不确定扰动的基础上,能够有效地抑制系统抖振,并且跟踪误差能够在短时间内以指数速率完成收敛。  相似文献   

11.
《机械传动》2016,(7):62-66
针对具有多变量和未知非线性的谐波驱动机构,建立其系统数学模型,定义系统误差,并逐步构造虚拟函数,利用RBF神经网络在线逼近谐波驱动机构中的非线性环节,最后建立系统自适应控制规律,设计基于RBF神经网络的动态面控制器。结合Lyapunov稳定性分析方法论证闭环系统的收敛性,通过理论分析并与常规PID的仿真结果进行比较。结果表明,所提出的神经网络动态面控制器实现了对谐波驱动机构的高性能跟踪控制,且具有很好的控制精度,有效地抑制未知非线性外界扰动对系统的影响。  相似文献   

12.
基于预测函数控制和扰动观测器的永磁同步电机速度控制   总被引:3,自引:0,他引:3  
设计了基于预测函数控制的速度控制器,以减小永磁同步电机的转矩波动,提高电机的转速控制精度。针对因外部扰动因素引起的控制器跟踪性能下降问题,设计了基于预测函数控制和扰动观测器的双环控制器;通过扰动观测器估计系统扰动,并据此产生转矩电流补偿量对控制量进行前馈修正,从而实现扰动的抑制。实验结果显示:当电机从静止跟踪到设定600 r/min转速时,系统没有超调,稳态精度为2 r/min;当电机以600 r/min稳速运行并加入1.6 N·m的转矩扰动时,转速最大波动为5 r/min。与传统的PI控制算法相比,所设计的控制器使转速波动减小了4.2% 。仿真分析和实验数据表明:基于预测函数控制和干扰观测器的控制器能够有效地抑制扰动,提高系统转速跟踪精度。  相似文献   

13.
对悬架系统所用磁流变阻尼器进行阻尼特性试验,利用Levenberg-Marquardt优化算法对磁流变可调Sigmoid模型进行参数辨识,运用最小二乘法对辨识的参数进行拟合;基于天棚阻尼系统,设计了四分之一车辆悬架系统滑模控制器;采用极点配置法确定切换面参数,使用饱和函数代替符号函数,缓解滑模控制系统抖振问题,运用模糊控制、RBF神经网络对半主动悬架滑模控制器进行优化;以随机路面激励作为输入,分别对模糊控制、RBF神经网络优化的滑模控制器半主动悬架进行仿真分析.仿真结果表明:该优化算法辨识的可调Sigmoid模型具有良好的控制性能,利用该模型可实现对阻尼力的准确控制,所设计的RBF优化滑模控制器具有比模糊滑模控制器更优异的性能.  相似文献   

14.
由于自身结构上的特点,谐波传动系统存在柔性变形、摩擦和外界不确定干扰等非线性因素。传统控制器大多对系统进行了一定程度的简化,或未考虑非线性外界扰动,导致所设计的控制器性能达不到预期效果。为了提高系统精度,建立了考虑系统非线性刚度和非线性摩擦的谐波传动系统动力学模型;基于试验数据,采用最小二乘法对模型进行参数辨识;采用径向基函数(Radial Basis Function,RBF)神经网络在线逼近系统非线性摩擦和外界不确定干扰力矩,并提出了一种基于RBF神经网络的自适应反演控制器;利用Lyapunov稳定性理论,证明了其闭环系统的收敛性。仿真结果表明,与普通Back-stepping控制相比,在受到外界未知干扰后,所提出的RBF神经网络自适应反演控制能有效地逼近系统非线性摩擦和外界未知干扰,其跟踪误差峰-峰值能迅速稳定到0.000 82 rad;而Back-stepping控制对外界未知干扰比较敏感,其跟踪误差峰-峰值增大至0.012 3 rad左右。所提出的RBF神经网络自适应反演控制能抑制参数动态变化和外界干扰对系统传动精度的影响,提高系统的传动精度。  相似文献   

15.
针对数控机床可控励磁直线同步电动机磁悬浮系统的强非线性、外部扰动不确定性的问题,设计基于RBF神经网络直接自适应控制器.通过分析磁悬浮系统的运行机理,推导运动方程及悬浮力方程,进而建立系统的状态方程;用悬浮高度的跟踪误差和误差的变化量构造误差函数,设计直接自适应理想控制器并采用RBF神经网络对其进行逼近;设计自适应律来估计神经网络理想权值,对误差函数的变化率构造二次型Lyapunov函数,利用Lyapunov稳定性理论来证明系统稳定;通过Matlab对控制系统进行计算机仿真,结果表明该方法设计的控制器与自适应模糊滑模控制器和PID控制器相比,空载启动时调节时间减少了23.5%,突加负载时动态降落减少了64.7%,恢复时间减少了38.2%,具有稳态误差小,调节时间和恢复时间短,抗扰性较强的优点,能有效提高磁悬浮系统的控制性能.  相似文献   

16.
针对全断面隧道掘进机的推进压力和推进速度的匹配问题,应用RBF神经网络算法设计了使推进压力和推进速度匹配且推进速度能快速跟随设定目标的自适应控制器。先在MATLAB中建立推进控制系统仿真模型,分析控制器自适应控制效果,然后在AMESim中建立推进系统液压控制模型,并与MATLAB联合仿真。联合仿真验证该控制器能在刀盘负载压力波动突变的情况下,使刀盘推进速度和推进压力跟随设定目标。试验证明,该控制器对负载大范围扰动有很好的抑制能力,能明显提高推进速度和推进压力耦合度并减小两者的波动范围。  相似文献   

17.
针对磁悬浮永磁直线电动机中的不确定性扰动,提出基于线性矩阵不等式( LMI)方法设计进给系统的H∞鲁棒控制器.首先,采用矢量控制方法中的id=0控制策略,把非线性系统解耦成独立的线性电流子系统和速度子系统.其次,根据H∞性能指标与线性矩阵不等式的等价性,将设计问题转化为对LMI的求解,进而得到磁悬浮永磁直线电动机系统的状态反馈H∞控制器.最后,为了验证设计的有效性,在MATLAB环境下应用Simulink建立系统的仿真模型,对控制系统进行仿真研究,结果表明所设计的H∞控制器满足对不确定性扰动抑制的要求.  相似文献   

18.
针对轮式移动机器人在滑移扰动下模型的不确定性,提出了一种基于RBF神经滑模控制的跟踪控制策略。建立机器人在滑移扰动下的动力学模型,利用运动学反步控制器得到虚拟线速度和角速度,基于虚拟输入设计了神经滑模动力学控制器,最后对所设计的控制器进行仿真与实验,结果表明该控制方法能快速准确地在滑移扰动下跟踪期望轨迹,具有良好的误差收敛效果。  相似文献   

19.
针对直接驱动型机械手的随动控制问题,提出了一种基于滑动模态扰动观测器的变结构控制器.通过观测由系统的非线性、模型的不确定性和外来干扰所造成的广义扰动,将非线性、强耦合的机械手动力学系统线性化,并解耦为多个单输入、单输出线性系统.控制器的设计不再依赖于机械手的精确模型.在二连杆机械手上做的仿真研究表明,在负载大范围变化的条件下,采用滑动模态扰动观测器的控制系统,比全状态反馈的控制系统具有更好的鲁棒性.  相似文献   

20.
吴忠强  张晓霞 《机械设计》2012,29(12):28-33
针对具有参数不确定刚性机器人系统的跟踪控制问题,提出了一种基于视觉反馈和全调节RBF神经网络的自适应反演控制器设计方法。根据安装在末端执行器的CCD摄像机提取的特征点确定期望位置,利用与一般设计不同的全调节RBF神经网络逼近系统的不确定项及外界干扰。在调节RBF神经网络权值的同时调节中心点值和影响范围,使得全调节RBF神经网络具有了更强的在线逼近能力。应用Lyapunov稳定性理论,证明了系统的所有信号均有界,控制器可以保证机械臂的运动按指数收敛到期望位置。仿真结果验证了所提控制器的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号