首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
林凤涛  王瑞涛 《机电工程》2020,37(8):882-887
针对高速动车组车轮多边形磨耗会加剧轮轨间的相互作用,导致轮轨间异常伤损的问题,建立了车辆轮对的有限元模型,并利用Lancos法对车轮进行了模态分析。建立了考虑轮对柔性的车辆刚柔耦合动力学模型,研究了车轮多边形磨耗对轮轨力和轴箱加速度的影响,分析了不同速度级下的不同幅值、阶次的车轮多边形磨耗的动力学响应。仿真及研究结果表明:随着车轮多边形磨耗的幅值增加,轮轨垂向力和轴箱垂向加速度均有增加,在18、23多边形阶次下,车轮多边形磨耗引发的激扰频率区间为300 Hz~350 Hz、500 Hz~550 Hz和680 Hz~750 Hz,该频率区间与柔性轮对系统模态接近引起谐振,导致在上述区间段轮轨力与振动加速度幅值显著增加。  相似文献   

2.
为表征车轮多边形化对车辆通过道岔的动力学性能的影响,以高速动车组和客运专线12号道岔为研究对象,建立高速车辆-道岔耦合动力学模型。多边形车轮采用简谐波与实测多边形两种形式模拟,综合考虑多边形车轮经过道岔的状态、左右侧车轮分布方式、多边形阶数和幅值等影响因素,计算车轮多边形化车辆通过道岔的动力响应。结果表明,多边形车轮半径偏差变化率最大点经过心轨处的响应最大。随着多边形阶数增加,动力响应呈先增大后减小的趋势,15、16阶时响应达到最大;左右侧车轮多边形同相位分布比反相位分布的响应大。多边形幅值越大,轮轨垂向力和轮对垂向加速度越大,当幅值达到0.20 mm,轮轨垂向力超过安全限值,且幅值超过0.16 mm,响应会明显增强。多边形车轮对车辆通过道岔的平稳性影响较小。  相似文献   

3.
高速铁路长时间运营,经常发生车轮多边形磨耗,并伴随钢轨波磨,两种损伤形式对列车运行特性的综合影响有待深入研究。采用简谐函数法建立车轮多边形模型,设计余弦函数描述钢轨不平顺磨耗,建立列车刚柔耦合动力学模型,分析不同车轮多边形及钢轨波磨综合磨耗情况下,列车的动力学性能的影响,并提出轮轨综合磨耗的安全限值。结果表明:在轮轨综合磨耗激扰下对列车的动力学性能的影响更为剧烈;列车运行速度为300 km/h下,轮轨垂向力增长幅值最大达到30%,车轮与25阶振型模态产生共振;车轮多边形比钢轨波磨对垂向力的影响更大;不同多边形阶次、幅值下,轮轨综合磨耗工况对轴箱、轮对以及钢轨垂向振动加速度影响更大。车轮多边形安全限值更小,多边形幅值限值平均降低了25.9%,在轮轨综合磨耗作用下更易超出限值;当速度为300 km/h,提出了钢轨波磨和车轮多边形阶次在一定范围内的安全限值。  相似文献   

4.
首先基于刚柔耦合理论,考虑了轮对、轴箱和构架的柔性,建立了动车组车辆刚柔耦合动力学模型;然后又通过模态叠加法建立了轨道的动力学模型,从而发展成车线-刚柔耦合动力学模型。随后,在车轮上施加20阶理想多边形,研究了300 km/h下轴箱垂向加速度、轮轨垂向力和轮轴弯曲应力的响应,结果表明:轴箱垂向加速度和轮轨垂向力以577 Hz的多边形通过频率波动,而轮轴弯曲应力主频为28.8Hz的车轮转频,在此基础上,叠加了多边形的通过频率,因此多边形的通过频率577 Hz会分岔为548 Hz和605 Hz两个频率。通过对不同速度和不同多边形幅值下车辆响应的研究可以得到以下结论:随着速度和多边形幅值的增大,轮轨力最大值总体上呈现增大趋势。从轮轨力最小值上看:速度越大,多边形幅值越大,则更容易发生轮轨分离。当车轮多边形通过频率与轮轨耦合共振频率耦合,会引起轮轨垂向力的增大。当与轴箱自身模态频率耦合时会导致轴箱加速度的变大。轮轴应力则主要受到轮轨耦合共振模态以及轮轴自身的弯曲模态影响。  相似文献   

5.
为了探究低阶车轮多边形对列车运行安全性的影响,通过SIMPACK软件建立车辆—轨道系统动力学模型,采用谐波函数法对车轮圆周施加多边形特征,计算1~4阶车轮多边形在不同不圆度幅值和车速等级下的动力学响应指标,并从脱轨系数和轮重减载率两方面对列车运行安全性进行评价。结果表明:车轮多边形会造成轮轨垂向力的大幅度变化,并随着不圆度幅值的增大而增加,严重时会出现"跳轨",但对横向力影响较小,爬轨脱轨不易发生;1~4阶车轮多边形的不圆度幅值的安全限值分别为0.4mm、0.4mm、0.7mm和0.4mm。  相似文献   

6.
车轮多边形是高速列车运行过程中常见的磨耗现象,该现象使轮轨作用力增大,齿轮箱持续异常振动,并会影响其疲劳寿命.为研究高速列车车轮多边形对齿轮箱疲劳寿命的影响,建立了含有齿轮箱支撑轴承的驱动系统和柔性齿轮箱的刚柔耦合整车动力学模型,采用数值仿真分析方法,通过分析不同车轮多边形幅值下轮轨垂向力和齿轮箱垂向振动加速度确定极端...  相似文献   

7.
为研究高速列车高阶车轮多边形对车辆系统动力学性能的影响,对轮对进行模态缩减,建立完整的车辆系统刚柔耦合动力学模型,模型中仅把轮对考虑为弹性体,其余部件视为刚体。通过修改轮对的外形来模拟车轮多边形,进行仿真计算研究车轮多边形波深、谐波数以及列车运行速度对车辆动力学性能的影响。结果表明:将轮对考虑为弹性体将会更加准确地模拟出车轮多边形化对轮轨力的影响,车轮多边形对车辆临界速度和轮轨垂向力有较大的影响,而且当多边形阶数达到一定值时车辆会出现跳轨现象;车轮多边形对车辆平稳性指标影响很小。  相似文献   

8.
列车车轮多边形磨耗会显著加大轮轨相互作用力和转向架关键部件振动幅度,恶化车辆系统和轨道部件的工作环境,严重时将会威胁到行车安全。基于三维车辆-轨道耦合动力学模型,用谐波叠加法模拟车轮多边形磨耗,作为车辆轨道耦合动态行为分析时的激励输入,计算车轮多边形磨耗阶次、车辆运行速度和运行里程对轮轨力的影响,并分析车轮多边形磨耗与轮轨力之间的相位关系;建立转向架系统高频振动全有限元模型,以时域轮轨力作为模型输入,分析车轮多边形磨耗参数对转向架轴箱、构架振动响应的影响。计算结果显示,随着列车运行速度、车轮多边形磨耗幅值和阶数的提高,轮轨垂向作用力波动范围和转向架振动响应均会显著增大。所得的结果可为高速列车车轮多边形形成的机理和抑制措施的进一步研究提供参考和指导。  相似文献   

9.
针对某和谐型电力机车在运营过程中存在振动过大等问题,对该型机车车轮不圆度和线路振动进行了测试。基于SIMPACK软件建立了考虑钢轨、轮对和构架弹性变形的机车-轨道刚柔耦合动力学模型,通过试验结果对模型进行了验证。利用建立的仿真模型分析了车轮多边形对机车振动和轮轨相互作用的影响,据此提出了机车车轮多边形镟修限值。试验测试发现该型机车车轮存在显著的16~19阶和24阶多边形磨耗,且车轮多边形磨耗是引起机车异常振动的根本原因。通过车轮镟修可以显著降低机车振动水平。机车关键部件的柔性对振动影响较大,在仿真计算时需予以考虑。基于轮轨垂向力限值,建议对于高阶多边形车轮,当径跳超过0.25 mm及时进行镟修。  相似文献   

10.
通过分析轮轨蠕滑率和自由轮对的蛇行运动方程,得到轮对横移和摇头的相互耦合关系式;基于多体动力学软件UM建立某型高速动车组拖车动力学模型,对4种车轮多边形工况进行接触斑内的蠕滑力分析,研究车轮多边形对轮轨蠕滑特性和轮对横移的影响。结果表明:车轮多边形的阶数和幅值对轮轨蠕滑特性有较大的影响,总体上轮轨蠕滑力随车轮多边形阶数和幅值的增大而增大,当左右两侧车轮出现不同阶数主导的车轮多边形时,左右两侧车轮的纵向蠕滑力相差较大;两侧车轮多边形幅值的不同会破坏轮对的对中能力,高速运行时会出现蛇行失稳现象,并且车辆的非线性临界速度会随车轮多边形磨损的加剧而降低。  相似文献   

11.
为研究货车车轮扁疤状态下的动力学表征,为车轮扁疤的间接识别提供理论支撑,建立了配置有转K6转向架的C80铁路货车动力学模型,并推导了扁疤对钢轨的垂向冲击力公式及振动加速度公式,研究了车轮扁疤故障状态下的车轮轮轨力响应、承载鞍振动响应情况,并分析了故障状态下车轮扁疤长度与轮轨垂向力对应关系,为扁疤的故障检测和识别提供基础支撑.结果表明:扁疤故障状态下,轮轨垂向力与扁疤长度呈正比例关系,且轮轨力最大值随车辆运行速度增大而呈现先增大后缓慢减小的趋势,承载鞍振动加速度变化趋势与轮轨垂向力基本保持一致.  相似文献   

12.
车轮扁疤所诱发的轮对弹性变形会导致车辆系统部件振动加速度增大,但目前相关研究主要采取刚体动力学模型。为更准确研究车轮扁疤对高速车辆振动特性的影响,在目前成熟且广泛已知的车辆-轨道耦合模型和车辆系统刚柔耦合模型的基础上,综合考虑车辆主要部件的弹性振动和轨道弹性振动的影响,建立改进的车辆-轨道动力学模型。结果表明,在扁疤作用下,轮对弹性变形对轮轨垂向力影响甚微,但对轴箱端盖垂向振动响应影响很大;扁疤所产生的冲击载荷经过转向架或者钢轨的传递作用,会导致同轴另一侧以及转向架同侧处的轮轨力产生小幅值波动;扁疤所在轮对的左右两个轴箱端盖振动加速度要远大于同一转向架的其他两处;在低速时,车轮扁疤对构架端部垂向振动加速度也有着不可忽视的影响。提出的研究成果揭示了车轮扁疤作用下车辆-轨道系统弹性变形的重要性,对车轮状态监控也具有重要意义。  相似文献   

13.
为研究高速列车谐波磨耗车轮滚动接触疲劳特性,建立谐波磨耗车轮高速轮轨滚动接触数值分析模型。该模型考虑了车辆系统的一、二系非线性悬挂力、轮轨非线性接触几何关系并考虑了钢轨振动及轮轨间的激励响应对接触蠕滑的影响。以CRH2型高速列车为研究对象,运用多体动力学软件UM参数化建立其动力学数值模型;对实测统计数据中最常见的1阶、6阶和11阶谐波磨耗以及波深0.1 mm和0.3 mm下车轮的蠕滑率/力进行分析;以不同阶数、波深车轮的蠕滑特性参数为疲劳模型的输入参数,研究谐波磨耗车轮的疲劳特性。结果表明:无谐波磨耗车轮处于弹性安定状态,1阶波深0.1 mm和0.3 mm车轮和6、11阶波深0.1 mm车轮都处于棘轮效应状态,6、11阶波深0.3mm处于塑性安定状态;低阶小波深车轮以疲劳为主,高阶大波深车轮以磨耗为主;与阶数相比,滚动接触疲劳、磨耗对波深的变化更为敏感,波深的增加会促进车轮蠕滑力/率的进一步快速增大,从而车轮的切向力迅速增大。  相似文献   

14.
车轮多边形不仅会严重影响高速列车的运行性能,同时会随着车轮的磨耗发生不断演变,因此其演变行为值得关注。对高速列车车轮多边形磨耗的演变过程进行数值模拟,并分析相位差对多边形磨耗的影响。结果表明,车轮初始3阶多边形会演变成多阶混合多边形,其中3的整数倍阶多边形占主要地位;车轮多边形发展过程中,存在一个磨耗急剧增大的"转折里程",应在"转折里程"之前对车轮多边形进行处理;车轮多边形使轮轨垂向力和轮对构架垂向振动加速度增大,同时导致跳轨现象,影响车辆运行安全;多边形相位差会导致车轮的磨耗迅速增加,磨耗率在轮相位差为1/2周期时达到最大。研究成果为车轮多边形的控制手段及现场镟修策略提供了理论依据。  相似文献   

15.
陈翔宇  樊懿葳  李凤林 《机械》2021,48(7):35-43
机车车轮的多边形化会在轮轨接触的位置引起异常振动,通过轴箱振动加速度的时频特征可以检测出这种异常振动,从而实现对车轮多边形的故障识别.本文首先构建了考虑轮对柔性的刚柔耦合动力学模型,拟合了不同主导阶次的随机多边形车轮多边形样本,样本径跳值均为0.2 mm.其次在频域内对不同阶次的多边形的频谱进行了分析,在时域内对轴箱加...  相似文献   

16.
为准确预测高速列车轮对擦伤对车辆性能的影响,基于车轨耦合动力学和非赫兹接触理论,对新旧两种轮对扁疤的几何外形进行数值描述,建立了考虑轮对扁疤的高速列车动力学模型,分析了轮对扁疤激扰对车辆走行部的影响。结果表明,旧扁疤对走行部冲击要大于新扁疤,随着扁疤尺寸的增大,走行部各部件受到的冲击载荷与振动加速度逐渐增大;随着速度增大,轮轨间垂向冲击先增大、后减少;当扁疤长度为10mm,速度为100km/h 时,轮轨垂向力达到最大值;随着速度增加,走行部簧下部件与簧上部件的振动特性差异不断加大。以轮轨垂向力为判断标准时,轮对扁疤尺寸应限制在30mm以内。  相似文献   

17.
利用钢轨焊接接头不平顺测量仪Railprof,测量并分析国内某高铁线路钢轨的焊接接头区在打磨前后几何不平顺的变化,发现钢轨打磨能够减小焊接接头的不平顺幅值。基于车辆-轨道耦合动力学理论,建立高铁车辆-轨道耦合动力学模型,以实际测得的钢轨焊接接头不平顺作为轮轨界面不平顺激励输入,分析焊接接头不平顺引起的轮轨动力学响应的特征,并讨论行车速度对焊接接头不平顺激扰下轮轨动力学响应的影响。结果表明,轮轨垂向力随着车辆通过速度的增加而增加,打磨后的轮轨垂向力以及轮重减载率相比于打磨前明显降低;钢轨打磨改善了焊接接头的不平顺性,并使轮轨的动力学性能(安全性)相应地得到改善。  相似文献   

18.
轮轴弯曲刚度对轮轨垂向动态载荷影响分析   总被引:3,自引:0,他引:3  
以国内某型地铁车辆为例,研究轮轴弯曲刚度对轮轨垂向动态载荷和轮对垂向振动的影响。在常规多刚体动力学模型的基础上,结合BM3000轮对和北京地铁轮对两种不同的弹性轮对模型,对比分别采用刚性轮对模型和弹性轮对模型时的轮对垂向振动加速度和轮轨垂向力。结果表明,对BM3000弹性轮对模型来说,由于其弯曲刚度相对较小,随着运行速度的增大,轮对垂向振动加速度和轮轨力与刚性轮对的差距不断加大,而对于轮轴弯曲刚度较大的北京地铁轮对来说,其弹性轮对模型和刚性轮对模型的结果比较接近,在计算的速度下轮对的振动峰值及频率均有明显的降低。因而,通过加大轮轴弯曲刚度可明显改善轮对的垂向振动和轮轨垂向力,实现改善轮轨动态接触状态的目的。  相似文献   

19.
车轮多边形会造成轮轨冲击,对车辆、轨道零件造成破坏,严重影响列车运行的安全稳定性。以CRH3型车作为研究对象,建立动力学仿真模型,模型中将车轮考虑成刚性,将轨道视为柔性体,通过实测与仿真对比验证了模型;通过改变轮对的形状,研究谐波数、波深、车速对轮轨力的影响。研究结果表明,车轮多边形阶数、波深、车速对轮轨力影响较大,在车速为300km/h下波深0.14mm时出现跳轨,波深达到0.24mm时,轮轨力最大值超限。该研究结果为进一步研究轮轨关系、保证列车安全运行提供了理论支持。  相似文献   

20.
地铁车辆车轮多边形化形成原因分析   总被引:9,自引:1,他引:8  
针对地铁车辆车轮多边形化问题,探讨分析车轮多边形化形成原因。提出车轮多边形化是由车轮滚动多周的振动所形成的这一创新观点,并分析车轮多边形化的顶点相位角、主振频率与运行速度之间的关系。以某直线电动机地铁车辆为例,基于建立的多体动力学模型,研究各速度下轮轨垂向力的主导频率,分析易产生车轮9边形化的速度及主导频率特性,指出在72~80 km/h的速度范围内,该直线电动机地铁车辆有形成车轮9边形化的可能。以72 km/h和80 km/h为例,给出此速度下的轮轨垂向力及其主导频率、前转向架直线电动机垂向振动加速度及其主振频率,结果表明两种速度下主导频率分别为39.08 Hz和43.48 Hz的振动有形成车轮9边形化的趋势。指出各速度下的相位角变化,并给出车轮9边形化的示意图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号