首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This short communication reports on achieving 18·8% total‐area conversion efficiency for a ZnO/CdS/Cu(In,Ga)Se2/Mo polycrystalline thin‐film solar cell. We also report a 15%‐efficient, Cd‐free device fabricated via physical vapor deposition methods. The Cd‐free cell includes no buffer layer, and it is fabricated by direct deposition of ZnO on the Cu(In,Ga)Se2 thin‐film absorber. Both results have been measured at the National Renewable Energy Laboratory under standard reporting conditions (1000 W/m2, 25°C, ASTM E 892 Global). The 18·8% conversion efficiency represents a new record for such devices (Notable Exceptions) and makes the 20% performance level by thin‐film polycrystalline materials much closer to reality. We allude to the enhancement in performance of such cells as compared to previous record cells, and we discuss possible and realistic routes to enhance the performance toward the 20% efficiency level. Published in 1999 by John Wiley & Sons, Ltd. This article is a US government work and is in the public domain in the United States.  相似文献   

2.
Polycrystalline CuIn1−xGaxSe2 (CIGS) thin films were deposited by the non‐vacuum, near‐atmospheric‐pressure selenization of stacked metallic precursor layers. A study was carried out to investigate the influence of significant factors of the absorber on the solar cells performance. An efficiency enhancement was obtained for Cu/(In+Ga) atomic ratios between 0·93 and 0·95. The slope of the observed energy bandgap grading showed a strong influence on the VOC and the short circuit current density JSC. An increase of the Ga content in the active region of the absorber was achieved by the introduction of a thin Ga layer on the Mo back contact. This led to an improvement of efficiency and VOC. Furthermore, an enhanced carrier collection was detected by quantum efficiency measurements when the absorber layer thickness was slightly decreased. Conversion efficiencies close to 10% have been obtained for these devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Cu(In,Ga)Se2 (CIGS) and related semiconducting compounds have demonstrated their high potential for high-efficiency thin-film solar cells. The highest efficiency for CIGS-based thin-film solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, Zn(Se,OH)x buffer layers were deposited by CBD on polycrystalline Cu(In,Ga)(S,Se)2 (CIGSS). A total-area conversion efficiency of 13·7% was certified by the Frauenhofer Institute for Solar Energy Systems. The CIGSS absorber was fabricated by Siemens Solar Industries (California). For device optimization, the thickness and good surface coverage were controlled by XPS–UPS photoemission spectroscopy. A Zn(Se,OH)x thickness below 7 nm has been found to be optimum for achieving a homogeneous and compact buffer film on CIGSS, with open-circuit photovoltage Voc=535 mV, fill factor FF=70·76% and a high short-circuit photocurrent density Jsc=36·1 mA cm−2. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Reducing Cu(In,Ga)Se2 (CIGS) absorber thickness into submicron regime provides an opportunity for reducing CIGS solar cell manufacturing time and cost. However, CIGS with submicron‐thick absorber would suffer strong absorption loss in the long‐wavelength region. In this paper, we report a new fabrication route for CIGS solar cells on soda‐lime glass substrates with different Ga content (0.3 < [Ga]/([Ga] + [In]) < 0.6), all with absorber thicknesses around 0.9 µm. Efficiency of 17.52% has been achieved for cells with high Ga content of [Ga]/([Ga] + [In]) = 41%, which is currently the best reported efficiency for submicron‐thick CIGS solar cells. Unlike the normal‐thickness absorber (2–3 µm) that has an optimal [Ga]/([Ga] + [In]) of ~32%, the increased value of optimal [Ga]/([Ga] + [In]) in submicron‐thick absorber greatly enhances the open‐circuit voltage, by nearly 15% compared with that of samples with Ga content optimized at normal absorber thickness. This large gain in VOC well compensates the absorption loss in the long‐wavelength region and contributes to the enhancement of final solar cell efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of electrostatic fluctuations due to charged extended defects and strain‐induced bandgap fluctuations are examined in polycrystalline silicon on glass solar cells. The analysis is based on models previously applied to Cu(In,Ga)Se2 solar cells, but with a new interpretation of the local ideality factor associated with electrostatic fluctuations. It is shown that electrostatic fluctuations become influential to the cell voltage properties as the absorber dopant concentration falls below a certain threshold (a few 1015 cm−3), and the degradations to the open circuit voltage and fill factor are expected to increase with further lowering of dopant density. It is equally plausible that the electrostatic fluctuations originate from charged dislocations or grain boundaries. Bandgap fluctuations on the other hand can be detrimental to the open circuit voltage of cells of any absorber dopant density. However, this voltage degrading effect is seen only in the cells deposited by electron‐beam evaporation, and not amongst those made by plasma enhanced chemical vapour deposition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The control of composition and bandgap in chalcopyrite thin‐film absorber layers formed by a metal precursor reaction is addressed. Two processes using reaction with either H2Se or H2S as the final step of a three‐step reaction process were compared as follows: a three‐step H2Se/Ar/H2S reaction and a three‐step H2Se/Ar/H2Se reaction. In both processes, significant Ga homogenization was obtained during the second‐step Ar anneal, but the third‐step selenization resulted in Ga depletion near the Cu(InGa)Se2 surface, whereas the third‐step sulfization did not. Solar cells were fabricated using absorbers formed using each method, and the surface Ga depletion significantly affected device performances. The solar cell incorporating the sulfization yielded a better device performance, with an efficiency of 14.4% (without an anti‐reflection layer) and an open‐circuit voltage of 609 mV. The bandgap control in the metal precursor reaction is discussed in conjunction with the device behavior. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
We report a world-record, total-area efficiency of 17.1% for a polycrystalline thin-film Cu(In,Ga)Se2-based photovoltaic solar cell. the incorporation of Ga to raise the absorber bandgap has been accomplished successfully and in such a manner that an open-circuit voltage of 654 mV and a fill factor of greater than 77% have been achieved. We describe briefly the deposition process, the device structure, and the device performance characteristics.  相似文献   

8.
In this paper, lightsoaking and temperature‐dependent current‐voltage (JVT) measurements on Cu(In,Ga)Se2 solar cells with atomic layer deposited Zn1‐xMgxO buffer layers are presented. A range of Mg concentrations are used, from pure ZnO (x=0) to 26% Mg (x=0·26). Since this kind of solar cells exhibit strong metastable behaviour, lightsoaking is needed prior to the JVT‐measurements to enable fitting of these to the one‐diode model. The most prominent effect of lightsoaking cells with Mg‐rich buffer layers is an increased fill factor, while the effect on cells with pure ZnO buffer is mainly to increase Voc·. The activation energy is extracted from JVT‐measurement data by applying three different methods and the ideality factors are fitted to two different models of temperature‐dependence. A buffer layer consisting either of ZnO or Zn1‐xMgxO with a minor Mg content gives solar cells dominated by interface recombination, which probably can be related to a negative conduction band offset. A relatively high Mg content in the buffer layer (x=0·21) leads to solar cells dominated by recombination in the space charge region. The recombination is interpreted as being tunnelling‐enhanced. The situation in between these Mg concentrations is less clear. Before lightsoaking, the sample with x=0·12 has the highest efficiency of 15·3%, while after lightsoaking the sample with x=0·21 holds the best efficiency, 16·1%, exceeding the value for the CdS reference. The Jsc values of the Zn1‐xMgxO cells surpass that of the reference due to the larger bandgap of Zn1‐xMgxO compared to CdS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We report a novel route for growing Cu(In,Ga)Se2 (CIGS) thin films, based upon the Pulsed Electron Deposition (PED) technique. Unlike other well‐known deposition techniques, PED process allows the stoichiometric deposition of CIGS layers in a single stage, without requiring any further treatments for Cu/(In + Ga) ratio adjustment nor selenization. The structural properties of polycrystalline CIGS films strongly depend on the growth temperature, whereas post‐deposition annealing enhances the grain size and the <112> out‐of‐plane preferred orientation of the chalcopyrite structure, without affecting the film composition. Preliminary measurements of the performances of solar cells based on these films confirm the great potentiality of PED‐grown CIGS as absorber layers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Sulfur is extensively used to increase the bandgap of Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells and to improve the open circuit voltage (VOC ) in order to optimize the characteristics of the devices. This study uses a sulfurization process to obtain a double‐graded bandgap profile. Selenization was carried out on Cu(In,Ga) precursors, followed by one sulfurization process or two consecutive sulfurization processes on top of the CIGSe absorber layer surface. The optimum two‐step sulfurization process provides an increase of VOC of 0.05 V and an improvement of conversion efficiency of 1.17%. The efficiency of the 30 × 30 cm2 monolithic module, which has 64 CIGS cells connected in series (aperture area: 878.6 cm2), is 15.85%. The optical and electrical properties of the phase and the work function distribution were investigated using the depth profiles of the absorber layer as a function of the sulfurization conditions. The CIGSSe thin film formed by two‐step sulfurization with a high sulfur concentration exhibits a single work function peak, better crystallinity, and higher conversion efficiency than those of the thin film formed by two‐step sulfurization at low sulfur concentration. In terms of the Raman spectra depth profile, the phase areas for the CIGSSe thin film that underwent the optimized high sulfur concentration two‐step‐sulfurization appeared to have less of Cu2‐xSe phase than that with low sulfur concentration. Consequently, surface and interface phase analysis is an essential consideration to improve cell efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The formation of the interface between In2S3 grown by atomic layer deposition (ALD) and co‐evaporated Cu(In,Ga)Se2 (CIGS) has been studied by X‐ray and UV photoelectron spectroscopy. The valence band offset at 160°C ALD substrate temperature was determined as −1·2±0·2 eV for CIGS deposited on soda‐lime glass substrates and −1·4±0·2 eV when a Na barrier substrate was used. Wavelength dependent complex refractive index of In2S3 grown directly on glass was determined from inversion of reflectance and transmittance spectra. From these data, an indirect optical bandgap of 2·08±0·05 eV was deduced, independent of film thickness, of substrate temperature and of Na content. CIGS solar cells with ALD In2S3 buffer layers were fabricated. Highest device efficiency of 12·1% was obtained at a substrate temperature of 120°C. Using the bandgap obtained for In2S3 on glass and a 1·15±0·05 eV bandgap determined for the bulk of the CIGS absorber, the conduction band offset at the buffer interface was estimated as −0·25±0·2 eV (−0·45±0·2 eV) for Na‐containing (Na‐free) CIGS. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This communication reports an MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo/glass polycrystalline solar cell with a confirmed total-area conversion efficiency of 16.4%. the thin-film Cu(In,Ga)Se2 absorber was fabricated by computer-controlled physical vapor deposition (PVD) from the elemental sources. the resulting absorber has a Gal/In compositional grading that we refer to as a notch. Capacitance-voltage (C-V) measurements also reveal a graded doping profile in the region near the electronic p-n junction. the enhanced device performance is characterized by an open-circuit voltage (Voc) of 660 mV and a particularly high fill factor (FF) of 78.7%.  相似文献   

13.
A lift-off process has been developed to obtain Cu(In,Ga)Se2 solar cells on flexible polymer sheets. The absorber layer is grown by a co-evaporation method on a polyimide layer, which is spin coated on a NaCl covered glass substrate. The NaCl intermediate layer can provide Na to the Cu(In,Ga)Se2 layer during deposition. After the complete processing of the cells, the NaCl buffer layer is dissolved to separate the glass substrate from the ZnO/CdS/Cu(In,Ga)Se2/Mo/polyimide stack. A record conversion efficiency of 12.8% (total area) under AM1·5 illumination was independently measured at FhG/ISE, Freiburg, Germany. Such high efficiency solar cells on light weight and flexible substrates are needed for novel terrestrial and space applications. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Cu(In,Ga)Se2 (CIGS) solar cells have been designed for operation under mildly concentrated sunlight. The absorber was deposited via a three‐stage evaporation process that has consistently yielded high‐performance one‐sun devices. The device structure reported here was modified by reducing the thickness of the CdS window/buffer layer to enhance the short‐circuit current at the expense of the open‐circuit voltage. Operation of the devices under optical enhancement leads to significant increases in the voltage and fill factor. At 14 suns, the open‐circuit voltage for this device was 736 mV, the fill factor was 80.5%, and the efficiency was 21.5%. This result represents the first report of a polycrystalline thin‐film solar cell with an efficiency in excess of 20%. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

15.
The effects of alkali diffusion and post‐deposition treatment in three‐stage processed Cu(In,Ga)Se2 solar cells are examined by using atom probe tomography and electrical property measurements. Cells, for which the substrate was treated at 650°C to induce alkali diffusion from the substrate prior to absorber deposition, exhibited high open‐circuit voltage (758 mV) and efficiency (18.2%) and also exhibited a 50 to 100‐nm‐thick ordered vacancy compound layer at the metallurgical junction. Surprisingly, these high‐temperature samples exhibited higher concentrations of K at the junction (1.8 at.%) than post‐deposition treatment samples (0.4 at.%). A model that uses Ga/(Ga + In) and Cu/(Ga + In) profiles to predict bandgaps (±17.9 meV) of 22 Cu(In,Ga)Se2 solar cells reported in literature was discussed and ultimately used to predict band properties at the nanoscale by using atom probe tomography data. The high‐temperature samples exhibited a greater drop in the valence band maximum (200 meV) due to a lower Cu/(Ga + In) ratio than the post‐deposition treatment samples. There was an anticorrelation of K concentrations and Cu/(Ga + In) ratios for all samples, regardless of processing conditions. Changes in elemental profiles at the active junctions correlate well with the electrical behaviour of these devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Reduction of the absorber thickness combined with deposition on a flexible substrate is a technically viable strategy to allow lower cost manufacturing of Cu(In,Ga)Se2 solar modules. Flexible plastic substrates, however, require a low‐temperature deposition process and appropriate control of the band gap grading for achieving high efficiencies. In this work, we developed solar cells on polyimide films using evaporated Cu(In,Ga)Se2 absorbers with thickness of 0.8–1.3 µm. The double Ga‐grading profile across the absorber thickness was modified by varying the maximum Cu excess at the end of the second stage or by adapting the In and Ga evaporation flux profiles during the growth process. By minimizing the Cu excess during the intermediate stage of the growth process, no loss in open circuit voltage and fill factor is observed compared with a device having a thicker absorber. Efficiency of 16.3% was achieved for cells with an absorber thickness of 1.25 µm. Insufficient absorption of photons in the long wavelength region is mainly responsible for current loss. By changing the In and Ga evaporation profiles, the shape and position of the Ga notch were effectively modified, but it did not lead to a higher device performance. Modifications of the Ga compositional profile could not help to significantly reduce absorption losses or increase charge carrier collection in absorbers with thickness below 1 µm. Changes of open circuit voltage and fill factor are mostly related to differences in the net acceptor density or the reverse saturation current rather than changes of the double Ga grading. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
We report a total‐area efficiency of 15.9% for flexible Cu(In,Ga)Se2 thin film solar cells on polyimide foil (cell area 0.95 cm2). The absorber layer was grown by a multi‐stage deposition process at a maximum nominal process temperature of 420°C. The Na was added via evaporation of a NaF layer prior to the absorber deposition leading to an enhanced Voc and FF. Growth conditions and device characterization are described. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Tandem solar cell structures require a high‐performance wide band gap absorber as top cell. A possible candidate is CuGaSe2, with a fundamental band gap of 1.7 eV. However, a significant open‐circuit voltage deficit is often reported for wide band gap chalcopyrite solar cells like CuGaSe2. In this paper, we show that the open‐circuit voltage can be drastically improved in wide band gap p‐Cu(In,Ga)Se2 and p‐CuGaSe2 devices by improving the conduction band alignment to the n‐type buffer layer. This is accomplished by using Zn1−x Snx Oy , grown by atomic layer deposition, as a buffer layer. In this case, the conduction band level can be adapted to an almost perfect fit to the wide band gap Cu(In,Ga)Se2 and CuGaSe2 materials. With an improved buffer band alignment for CuGaSe2 absorbers, evaporated in a 3‐stage type process, we show devices exhibiting open‐circuit voltages up to 1017 mV, and efficiencies up to 11.9%. This is to the best of our knowledge the highest reported open‐circuit voltage and efficiency for a CuGaSe2 device. Temperature‐dependent current‐voltage measurements show that the high open‐circuit voltage is explained by reduced interface recombination, which makes it possible to separate the influence of absorber quality from interface recombination in future studies.  相似文献   

19.
Cu(In,Ga)Se2 thin-film solar cells have attracted significant research interest in recent decades due to their high efficiency in converting solar energy into electricity for enabling a sustainable future. Although the Cu(In,Ga)Se2 absorber can be grown as a single crystal, its polycrystalline form is dominating the market not only due to its lower costs, but also due to its unexpectedly higher cell efficiency. However, this absorber contains a high fraction of grain boundaries. These are structural defects where deep-trap states can be localized leading to an increase in recombination activity. This controversy is mirrored in the existing literature studies where two main contradictory believes exist: 1) to be crucial grain boundaries in Cu(In,Ga)Se2 absorber are anomalous, being benign in terms of cell performance, and 2) grain boundaries are regions characterized by an increased recombination activity leading to deteriorated cell performance. Therefore, the present review tackles this issue from a novel perspective unraveling correlations between chemical composition of grain boundaries and their corresponding electronic properties. It is shown that features such as Cu depletion/In enrichment, segregation of 1-2at.% of alkali dopants, and passivation by a wide-bandgap or type inversion at grain boundaries are crucial ingredients for low open-circuit voltage loss and, hence, for superior cell performance.  相似文献   

20.
The present contribution aims at determining the impact of modifying the properties of the absorber/buffer layer interface on the electrical performance of Cu2ZnSnSe4 (CZTSe) thin‐film solar cells, by using a Cd2+ partial electrolyte (Cd PE) treatment of the absorber before the buffer layer deposition. In this work, CZTSe/CdS solar cells with and without Cd PE treatment were compared with their respective Cu(In,Ga)Se2 (CIGSe)/CdS references. The Cd PE treatment was performed in a chemical bath for 7 min at 70 °C using a basic solution of cadmium acetate. X‐ray photoemission spectroscopy measurements have revealed the presence of Cd at the absorber surface after the treatment. The solar cells were characterized using current density–voltage (J–V), external quantum efficiency, and drive‐level capacitance profiling measurements. For the CZTSe‐based devices, the fill factor increased from 57.7% to 64.0% when using the Cd PE treatment, leading to the improvement of the efficiency (η) from 8.3% to 9.0% for the best solar cells. Similar observations were made on the CIGSe solar cell reference. This effect comes from a considerable reduction of the series resistance (RS) of the dark and light J–V, as determined using the one‐diode model. The crossover effect between dark and light J–V curves is also significantly reduced by Cd PE treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号