首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At 75/25 concentration ratio, bisphenol a polycarbonate (PC)/styreneacry-lonitrile copolymer (SAN) blend has poor impact resistance compared to PC/ABS. A rubber phase methacrylate-butadiene-styrene (MBS) of core/shell type was dispersed in PC/SAN blend. The morphology of the unmodified and modified blend was investigated. The influence of the acrylonitrile ratio in the SAN on the microstructure was studied. It clearly shows that core/shell resides at the interface between PC and SAN. It seems that core/shell particles enhance the adhesion between the different phases. Their presence influences the interface mobility; i.e., the coalescence of the dispersed phase observed in pure PC/SAN is considerably reduced when the MBS particles are added. The impact resistance of the samples was correlated with the morphology.  相似文献   

2.
The crystallization behavior of PBT as well as PC is changed in the controlled-processed blend due to intermolecular interactions between the different macromolecules in molten state. If the kinetics of the crystallization process prevents a crystallization-induced separation, the partial miscibility of the amorphous phases, measured by the glass transition temperatures, will lead to a decrease of the crystallinity of PBT. The crystallinity, normalized to the concentration of PBT in the blend, is independent from the concentration of PC at low coolling rates. At high cooling rates, PBT is crystallizing stepwise in the blend PBT/PC 40/60 wt.-%. The crystallization temperature in the anisothermic crystallization process is increased at low contents of PC due to a changed nucleation mechanism. The half-time of crystallization is increasing in blends with an increasing PC-content in isothermic crystallization experiments. The normally amorphous PC crystallizes considerably fast in presence of PBT in PC-rich blends. The crystallization or change in the state of order of PC was measured in situ by X-ray diffraction. Calorimetric experiments confirm this result and allow a quantitative estimation of the PC-crystallinity, which amounts to some 20% in the blend PBT/PC 5/95 wt.-%.  相似文献   

3.
Here, we demonstrate an easy method for the preparation of highly electrically conductive polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) nanocomposites in the presence of poly(butylene terephthalate) (PBT). In the presence of MWCNTs, PC and PBT formed a miscible blend, and the MWCNTs in the PC matrix were uniformly and homogeneously dispersed after the melt mixing of the PC and PBT–MWCNT mixture. Finally, when the proportion of the PC and PBT–MWCNT mixture in the blend/MWCNT nanocomposites was changed, an electrical conductivity of 6.87 × 10?7 S/cm was obtained in the PC/PBT–MWCNT nanocomposites at an MWCNT loading as low as about 0.35 wt %. Transmission electron microscopy revealed a regular and homogeneous dispersion and distribution of the MWCNTs and formed a continuous conductive network pathway of MWCNTs throughout the matrix phase. The storage modulus and thermal stability of the PC were also enhanced by the presence of a small amount of MWCNTs in the nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
With the use of macromonomers that have a dicarboxyl group, polycarbonate–poly(methyl methacrylate) (PC–PMMA) graft copolymers were prepared, and the relationship between the length of PMMA branches and Vickers hardness of the graft copolymer was investigated. With the use of the PC–PMMA graft copolymer as a modifier to improve the surface hardness of PC, Vickers hardness of PC/PC–PMMA blend polymers was examined. PC/PC–PMMA blend polymers are more transparent than PC/PMMA blend polymers. PC/PC–PMMA blend polymers are superior in Vickers hardness to PC/PMMA blend polymers, although the content of PMMA in PC/PC–PMMA blend polymers is smaller than that of PC/PMMA blend polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2774–2779, 2002; DOI 10.1002/app.10252  相似文献   

5.
本文系统地研究了PC与SBS共混体系的力学性能 ;通过SEM观察了共混物的形态结构 ;并对SBS增韧PC的机理进行了探讨 ;结合DSC分析结果表明 ,ABS g MAH对PC/SBS共混体系有很好的增容作用  相似文献   

6.
聚烯烃弹性体增韧改性聚碳酸酯的研究   总被引:1,自引:0,他引:1  
用四种聚烯烃弹性体对聚碳酸酯(PC)进行了增韧改性。探讨了不同种类和用量的增韧剂对聚合物共混物力学性能的影响。结果表明,EVA的加入使共混物韧性改善最明显,当其用量为15%时,材料的缺口冲击强度提高至38.7kJ/m^2,为纯PC的25倍,但材料的拉伸强度急剧下降。POE—g—MAH对PC的增韧效果仅次于EVA,但共混物的拉伸强度降低程度比EVA小,且共混物的断裂伸长率提高很多。其它两种共混体系PC/EAA、PC/LLDPE-g—MAH的性能介于EVA和POE—g—MAH之间。综合考虑材料的各种机械性能,添加20%的POE—g—MAH的PC共混物的性能较佳。  相似文献   

7.
PC/ABS合金的增韧研究   总被引:8,自引:0,他引:8  
罗筑  刘一春  于杰  兴江 《塑料工业》2001,29(5):15-16
对弹性体和增容剂增韧PC/ABS合金进行了试验研究,表明弹性体与增容剂的适当组合优于单组份的增韧效果,并且利用这种协同作用,可在一定程度上克服增韧对材料拉伸强度等性能指标造成的损失,达到优化材料性能的目的。  相似文献   

8.
聚碳酸酯—聚苯乙烯的反应性挤出共混研究(Ⅱ)   总被引:4,自引:0,他引:4  
用DSC进一步研究了PC/PS共混物的相容性。考察了在PC/PS混合过程中加入RPS对机械力学性能的影响,结果表明:RPS显示良好的增容作用,使反应性挤出共混物的拉伸强度,弯曲强度和冲击强度都高于相应的非反应性共混物。  相似文献   

9.
The morphology and nonisothermal crystallization behavior of blends made of poly(phenylene sulfide) (PPS), with a amorphous polycarbonate (PC) were studied. The blend is found to be partially miscible by the dynamic mechanical thermal analysis (DMTA) and melt rheological measurements. The nonisothermal crystallization behavior of blend was studied by differential scanning calorimetry (DSC). The results show clearly that the crystallization temperatures of PPS component in the blend decrease with increasing of PC contents. The crystallization kinetics was then analyzed by Avrami, Jeziorny, and Ozawa methods. It can be concluded that the addition of PC decreases the PPS overall crystallization rate because of the higher viscosity of PC and/or partial miscibility of blend, despite of small heterogeneous nucleation effect by the PC phase and/or phase interface. The results of the activation energy obtained by Kissinger method further confirm that the amorphous PC in the partial miscible PPS/PC blend may act as a crystallization inhibitor of PPS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Weijun Zhou  John Osby 《Polymer》2010,51(9):1990-1999
Reactive modification of polycarbonate (PC) with a small amount of ultra-high molecular weight polydimethylsiloxane (PDMS) provides an effective route to a novel blend polymer with superior flow and excellent impact toughness. Low temperature impact toughness for such a blend was found to be comparable to polycarbonate copolymers made by interfacial copolymerization of bisphenol A and specialty silicones with phosgene. Interestingly, the blend also showed strong shear thinning behavior and a viscosity that is almost an order of magnitude lower than the starting PC resin. Analysis of the blend composition and blend morphology revealed the presence of both PC-PDMS copolymer and un-grafted siloxane as a dispersed phase in the polycarbonate matrix. The PC-PDMS copolymer provides a compatibilization effect for the stable sub-micron blend morphology in an otherwise immiscible PC-PDMS blend system. Improvement of low temperature ductility (e.g., at −40 °C) by PDMS was thus made possible. The lubricating effect from siloxane and the possibility of fibrillation flow at high shear stress are suspected to be the main reasons for high flow characteristics of these blends.  相似文献   

11.
Carbon nanofiller reinforced polymeric materials offer the opportunity to obtain materials with desired properties. In the present study, effects of different loading of graphene oxide (GO) on the compatibility, thermomechanical, and morphological properties of incompatible polypropylene (PP)/polycarbonate (PC) polymer blends were investigated. The neat blend and blend nanocomposites were prepared by using a twin‐screw extruder under controlled shear pressure to explore the role of GO on thermomechanical properties of blends. Fourier transform infrared analysis showed the presence of GO in PC phase which was further confirmed by differential scanning calorimetry and morphological analysis. It was observed that up to loading of 0.5%, GO preferable dispersed in only PC phase and then dispersed in both PP and PC phase with further increase in GO loading due to increase in viscosity of PC phase. Field emission scanning electron microscopy investigation of PNCs showed the coalescence of PC phase with increase of GO loading. Tensile analysis confirmed that 1% of GO loading produced highest reinforcement in thermomechanical properties and further increase of GO loading deteriorate the mechanical properties. Dynamic mechanical analysis also showed high storage modulus for 1% loading. Thermal stability of 1% GO loaded nanocomposite was found to be higher than other blend nanocomposites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45062.  相似文献   

12.
A blend of bisphenol A polycarbonate (PC) and an acrylonitrile–styrene–acrylic elastomer (ASA) terpolymer with high surface gloss and excellent interfacial properties was developed for automobile applications. Because PC and the styrene‐co‐acrylonitrile (SAN) copolymer that formed the matrix in the PC/ASA blend were not miscible, two different types of compatibilizers were examined to improve the compatibility of the blend. A diblock copolymer composed of tetramethyl polycarbonate and poly(methyl methacrylate) (PMMA) was more effective than PMMA in increasing interfacial adhesion between PC and SAN. The surface gloss of the PC/ASA blend was always lower than that of the pure ASA included in the blend because of PC existing at the surface of the injection‐molding specimen. The PC/ASA blend with optimum surface gloss and enhanced interfacial adhesion was developed through the control of the molecular weight of PC and the compatibilizer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2097–2104, 2005  相似文献   

13.
对增韧聚碳酸酯(PC)/聚酯[聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)]合金进行了研究,结合合金的相形貌结果,分别选择PC和聚酯是连续相的合金进行了研究,同时对比了相同树脂比例下PC/PET和PC/PBT之间性能的差别。增韧剂选择甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)或MBS和接枝环氧基团的丙烯酸酯类增韧剂(X-GM A)复配物。结果表明,使用相同的增韧剂,PC是连续相的情况下,冲击强度更高,相同树脂比例情况下,PC/PET合金冲击强度比PC/PBT的差,拉伸和弯曲强度相差不大,PC/PET合金的熔体稳定性能比PC/PBT的差,PC是连续相合金的熔体稳定性比聚酯是连续相的要好,含有X-GMA的合金熔体稳定性能更好,这些结果和酯基的热分解、PET分子链运动活性比PBT的差以及酯交换程度的差异等有直接的关联。  相似文献   

14.
Electrically conductive polyaniline (PANI) and its blend with polycarbonate (PC) was prepared by one-step emulsion polymerization technique in which sodium lauryl sulfate (SLS) acts as surfactant and as a protonating agent for the resulting polymer. The prepared PANI and its blends were characterized by density, percentage of water absorption, and electrical conductivity. PANI–PC blend exhibits a conductivity value of 4.70 × 10−2 S/cm (PANI–PC1) and 5.68 × 10−5 S/cm (PANI–PC3) with a change in dopant from p-toluene sulfonic acid (TSA) to SLS, respectively. By using a more general method, which takes into account the presence of disorder of the second kind in polymers proposed by Hosemann, crystal size (〈N〉) and lattice strain (g in %) values were estimated. The variation of conductivity in doped PANI and PANI–PC blend has been explained on the basis of these microcrystalline parameters. TGA thermograms of PANI and PANI-PC blend show three-step degradation behavior. Thermal stability of PANI was improved after blending with PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 383–388, 2001  相似文献   

15.
本文以聚碳酸酯(PC)/聚乙烯(PE)/聚乙烯蜡接技马来酸酐(PEW-g-MAH)三元共混物为体系,研究了第三组份增容剂PEW-g-MAH用量。共混物两相之间界面张力和共混物力学性能之间的相互关系。论证了通过测量高聚物之间界面张力来确定第三组份增容剂的最佳用量的技术途径。  相似文献   

16.
The intrinsically impact brittle nature of the PC/PET blends can be effectively toughened by incorporating butylacrylate core-shell rubber. The rubber-modified PC/PET blend possess both excellent low temperature impact properties and reduced notch sensitivity. The ductile-brittle transition temperature of the blend decreases with the increase of rubber content. The presence of rubber in the PC/PET blend does not relieve the strain rate induced yield stress increase. Two separate modes, localized shear yielding and mass hear yielding, work simultaneously in the rubber toughening mechanism. The plane-strain localized shear yielding dominates the toughening mechanism at lower temperature and results in brittle failure. At higher temperature, the planestress mass shear yielding dominates the toughening mechanism and results in ductile failure. The critical plastic zone volume can be used to interpret the observed phenomenon.  相似文献   

17.
低摩尔质量PC/PP共混体系的增韧机理研究   总被引:1,自引:1,他引:0  
以熔融共混法制备了低摩尔质量PC/PP合金材料,借助于力学性能测试、SEM观察等手段对这一共混体系的增韧机理进行了研究。结果表明,剪切屈服和界面脱粘是该共混体系能量耗散的主要形式.界面张力对体系形态结构和韧性的影响较大,增强界面粘结有利于材料韧性的提高。提出的增韧机制模型可以较好地对该体系的增韧机理作出解释。PP可以作为PC的增韧剂使用,并且可在不降低其流动性的前提下较大幅度地提高低摩尔质量PC的韧性。  相似文献   

18.
The objective of the study is preparation of shape memory blend of polycarbonate (PC) and thermoplastic polyurethane (TPU). Polycarbonate is blended with three types of TPUs and subsequently mechanical, thermal, morphological, and shape memory properties of the PC/TPU blends are studied. When TPU content in the blend is higher than 40% (by weight), the glass transition temperature related to PC is not shown in the differential scanning calorimetry thermogram, indicating loss of PC properties. The 60/40 optimized blend of PC/TPUs exhibits maximum increment of about 1100% in elongation and 43% decrement in tensile strength. The shape recovery of the optimized blend obtained by addition of 40% (by weight) of TPUs in PC polymer is found to be 65% and shape fixity is 97%. These results suggest that the blend of PC/TPU may be utilized for various applications where shape memory property is required including strategic applications.  相似文献   

19.
Summary: Polycarbonate (PC)/high density polyethylene (HDPE) in situ microfibrillar blends were fabricated by a slit die extrusion, hot stretching, and quenching process. Despite PC and HDPE having a high viscosity ratio, which is usually disadvantageous to fibrillation, the morphological observation indicated that the blends had well‐defined PC microfibrils. The size and amount of the PC fibrils were nonuniform through the thickness of the extrudate, and were also affected by the PC concentration and hot stretch ratio. There were coarse and dense fibrils in the core zone, while these fibrils became finer and reduced in number toward the surface. The melt flow rate (MFR) of the PC/HDPE microfibrillar blend decreased with the increase of PC concentration, but increased with the larger hot stretching rate (or hot stretching ratio, HSR). Besides, it was found that the fibrillar blend had better flowability than the common blend with spherical particles at the same PC concentration. Temperature was also an important factor influencing the MFR due to the temperature dependence of PC and HDPE viscosity, and the PC phase morphology. The PC microfibrils could not be preserved beyond 230 °C and transformed into spherical particles. The rheological behaviors at various shear rates were studied by capillary rheometer. The orientation of PC fibrils and HDPE molecules with higher shear rate led to a decrease in the viscosity of microfibrillar blend. The data obtained in this study can help construct the technical foundation for recycling and utilization of PC and HDPE waste by manufacture of microfibrillar blends in future work.

SEM micrograph of the PC/HDPE microfibrillar blend.  相似文献   


20.
A novel polymer blend comprising polyethylene (PE) and poly(vinyl acetate) (PVAc) with a biocompatible surface was developed for fabricating medical devices. This blend was obtained by a new synthetic method using supercritical carbon dioxide fluid. Further, the acetyl group on the surface of this blend was converted to the hydroxyl group following the phosphorylcholine (PC) group. Surface analysis of the blend with attenuated total reflection Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and dynamic contact angle measurement revealed that the PC groups were located on the surface. Biocompatibility was evaluated by the adsorption of the bovine serum albumin and bovine plasma fibrinogen on the sheet surface. The hydrophilicity of the blend depended on the surface chemical structure introduced by surface reactions. Plasma protein adsorption decreased with the surface hydrophilicity. The PC groups were highly effective in reducing protein adsorption. We conclude that our process is a promising procedure for synthesizing new polymer materials including biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号