首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Worts made from raw sorghum and enzymes were successfully fermented even though the level of FAN present (51 mg/l) is well below that essential for fermentation of wort made from malted barley. Changes in typical fermentation parameters such as specific gravity, pH uptake of free amino nitrogen (FAN) and ammonium ions mirrored the increase in yeast cell concentration. Yeast viability remained high throughout the fermentation. Under identical fermentation conditions, malted barley worts showed typical fermentation profiles. However, malted barley worts with specific gravity maintained by the addition of D-glucose, but in which the FAN was diluted to a level similar to that found in a wort made from sorghum and enzymes, fermented more slowly and failed to attenuate fully. Five consecutive fermentations, using yeast cropped from the preceding to pitch the current fermentation were conducted. The specific gravity profiles were essentially the same in all five fermentations. Final values of pH, yeast in suspension, yeast viability and FAN were also indistinguishable. The yeast crop taken from fermentations of worts made from raw sorghum and enzymes represented a 5-fold increase over the initial pitching rate. When compared to commercial beers, the beers derived from fermentation of worts made from raw sorghum and enzymes contained lower levels of ethyl acetate, and higher levels of both 2- and 3-methyl butanol. In the beers derived from sorghum, isobutanol was always less than 20% of the total higher alcohol concentration.  相似文献   

2.
Different time and temperature programmes were used to evaluate the production of hot water extract (HWE) and free amino nitrogen (FAN) from mashes containing raw sorghum and either malted sorghum or malted barley in the presence of microbial enzymes. Two malted varieties of sorghum (SK 5912 and Zaria) were used. The former gave higher HWE but lower FAN than the latter. Sorghum malts were unable to provide enzyme activity for starch extraction and exogenous enzymes were always needed. Seventeen commercially available enzyme preparations were assessed. A double-mash process was developed. Inclusion of calcium ions (200 ppm) was beneficial but adjustment of mash pH had little effect. Raw sorghum was gelatinised at 100°C for 30–40 min in the presence of a heat-stable α-amylase followed by mixing with a malt mash (started at B0°C) to give a temperature of 65°C with a total mash time of 167 min (127 min from mixing the mashes). The inclusion of a single commercial enzyme preparation (containing both proteolytic and amylolytic activities) was sufficient to achieve satisfactory HWE and FAN. Addition of different activities or combinations of activities gave no significant advantages. To obtain levels of FAN of 100–140 mg/l however excessive amounts of enzymes were required.  相似文献   

3.
The sugar profile of wort from laboratory malted barley, malted sorghum, unmalted barley and unmalted sorghum grains mashed with commercial enzyme preparations were studied. Similar levels of glucose to maltose (1:7) were observed in wort of malted barley and malted sorghum. Mashing barley or sorghum grains with commercial enzymes changed the glucose to maltose ratio in both worts, with a greater change in wort from sorghum grains. Although hydrolysis with commercial enzymes released more glucose from maltose in sorghum wort, the same treatment retained more maltose in barley wort. Adding malted barley to sorghum grains mashed with commercial enzymes restored the glucose to maltose ratio in sorghum mash. Fermentation of wort produced from all barley malt (ABM) mash and commercial enzyme/barley malt/sorghum adjunct (CEBMSA) mash of similar wort gravity was also studied. ABM and CEBMSA worts exhibited similar glucose to maltose ratios and similar amino acid spectra. However, ABM released more individual amino acids and five times more proline than wort from commercial enzyme/barley malt/sorghum adjunct. ABM produced 27% more glucose and 7% more maltose than CEBMSA. After fermentation, ABM mash produced 9.45% ABV whilst commercial enzyme/barley malt/sorghum adjunct mash produced 9.06% ABV. Restoration of the glucose/maltose ratio in the CEBMSA mash produced wort with a sugar balance required for high gravity brewing. © 2020 The Institute of Brewing & Distilling  相似文献   

4.
Brewing and bioethanol production with raw grain and exogenous enzymes produces wort with satisfactory hot water extract (HWE). However, the free amino nitrogen (FAN) and mineral content can be too low, owing to low protein digestibility (PD) and phytate–mineral chelation, respectively. This study evaluated the potential for improvement in yeast nutrition in raw whole sorghum and maize brewing and bioethanol production by genetic modification (GM) of sorghum to improve PD and reduce phytate content, and by treatment with exogenous phytase. While phytase addition decreased sorghum spent grain phytate content (88%) and content of minerals (17 to 59%; i.e. increased wort mineral content), it did not affect maize phytate spent grain mineral content or HWE significantly. However, phytase addition did increase maize wort FAN (20%), sorghum HWE (2.8 percentage points) and wort FAN (23%). GM sorghum gave reduced spent grain mineral contents (11–38%), increased HWE (5.5 percentage points) and wort FAN (71%). Hence, genetic modification of sorghum to improve PD and reduce phytate content has considerable potential in raw grain brewing and bioethanol production to improve yeast nutrition. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

5.
Using oats as a raw material in brewing has recently become the focus of increased interest. This is due to research findings that have shown that oats can be consumed safely by coeliac sufferers. It is also a response to consumer demand for products with novel sensory properties. In this study, beer was produced entirely from oat malt, from barley malt and from oat and barley malts mixed with various quantities of unmalted oats. Compared with barley wort, wort made from malted oats provided a lower extract content and had a higher protein content, but a lower free amino nitrogen content (FAN). The oat wort also showed increased viscosity and haze. The addition of unmalted oats during wort production produced significant changes in the physico‐chemical parameters of both oat and barley worts and beers. Unmalted oats caused an increase in wort viscosity and haze, and a reduction in total soluble nitrogen and FAN. Unmalted oats also contributed to lowering the concentration of higher alcohols and esters. Beer made from 100% oat and barley malts exhibited a similar alcohol content. The use of an oat adjunct in both cases resulted in a lower ethanol content. The introduction of enzyme preparations during the production of wort with oat adjunct had many benefits: increased extract content and FAN; a higher volume of wort; and a lower viscosity that led to faster wort filtration. This research suggests that the use of enzymes is necessary to make production using a high proportion of oats in the grist profitable. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

6.
A sorghum variety was supplied as commercial malt and as an unmalted cereal by a maltster. The commercial sample had been malted in a tropical country. Sub‐samples of the unmalted cereal were malted in the laboratory under controlled germination temperatures of 28°C and 30°C. Laboratory and commercially malted sorghum were studied for their brewing qualities. The α‐amylase development in sorghum malt was enhanced when germination was carried out at the higher temperature of 30°C rather than at 28°C. Hot water extract (HWE) was more variable. With infusion mashing, results showed a significant difference for germination time (3–6 days), but no significant difference relating to germination temperature. With the decantation mashing method the reverse was observed. The low numerical values of HWE obtained from sorghum malt in the infusion mashing process confirmed that this process is not suitable to produce optimal extract development from malted sorghum. The 28°C germinated sorghum released more FAN products into the worts than the 30°C malt, using both the infusion and decantation methods. With regard to the parameters tested, commercially malted sorghum gave lower analytical values than laboratory malted sorghum. It was also observed that variations in malting temperatures and mashing processes can cause unexpected variations in the analyses of sorghum malt. These findings suggest that careful process control is required during the malting and mashing of sorghum.  相似文献   

7.
In this study, sorghum grains were malted using different malting regimens and the malt qualities were analysed for cold water extract (CWE), hot water extract (HWE) and diastatic power (DP). Results showed that malting regimen produced sorghum malts with peak CWE, HWE and DP within the pre-determined limits of malting regimen. From this, predictive models of sorghum malt quality were developed and tested. Whilst steeping duration interacts significantly with the germination period to cause variations in CWE and HWE, only the germination period significantly influenced the DP of sorghum malts. However, the kilning temperature showed no significant impact on the parameters studied. Besides CWE, HWE and DP correlating positively with each other, the developed predictive models were significant (P < 0.05) and satisfy the quality of fit (R2 > 0.70) of the proposed models. The result demonstrated that wort for different purposes can be obtained by varying the malting operational conditions in the predictive model, thus saving time, resources, preliminary studies and research designs. Besides the promotion of a cheaper local alternative material for industrial wort production and brewing purpose, this research provides valuable insight on the brilliant prospect of variable malting regimen in predicting and adjusting the quality characteristics of sorghum malt and wort. Future studies are required to develop models for wort produced from peak CWE, HWE and DP, for predicting wort quality characteristics.  相似文献   

8.
The interactions of wort free α-amino nitrogen (FAN) and sugar in sorghum beer fermentations were quantified and a simple equation derived. This equation describes the wort FAN demand as a function of the sugar concentration necessary to produce a fully fermented beer within 48 hours. The influence of wort FAN on sorghum beer fermentations had not been quantified so research was undertaken to define sorghum beer yeasts' requirement for wort FAN and the interactions that occur between wort FAN and sugar. Laboratory, sorghum malt and adjunct, worts mashed to cover a wide range of FAN and wort sugar concentrations, were fermented and analysed. The initial wort FAN affects the ethanol production rate, FAN uptake and sugar utilisation rates.  相似文献   

9.
In sorghum brewing, obtaining sufficient Free Amino Nitrogen (FAN) for rapid and complete fermentation remains a problem due to the high proportions of unmalted sorghum used and the poor digestibility of wet‐heat treated sorghum protein. Sorghum mutant lines with high protein digestibility have been developed through breeding. These high protein digestibility sorghums (HPDS) have protein bodies with villi‐like borders that apparently facilitate protease access. This work investigated FAN production from HPDS when malted and mashed, to assess their potential for use in sorghum brewing to improve wort FAN levels. When malted, HPDS contained substantially higher levels of FAN than normal protein digestibility sorghums (NPDS), 32 mg/100 g malt more. However, when the HPDS were mashed either as malt, or as grain or malt plus exogenous proteases, FAN production during mashing was not substantially higher than with NPDS subjected to the same treatments, only 6, 6–18 and 9–13 mg/100 g grain or malt, respectively. This is probably due to wet‐heat induced cross‐linking of the kafirin proteins reducing their susceptibility to proteolysis. Notwithstanding this, HPDS could be very useful for improving FAN levels in sorghum brewing if they are malted.  相似文献   

10.
Sorghum malt α-glucosidase activity was highest at pH 3.75 while that of barley malt was highest at pH 4.6. At pH 5.4 employed in mashing sorghum malt α-glucosidase was more active than the corresponding enzyme of barley malt. α-Glucosidase was partly extracted in water but was readily extracted when L-cysteine was included in the extraction buffer, pH 8. Sorghum malt made at 30°C had higher α-glucosidase activities than the corresponding malts made at 20°C and 25°C. Nevertheless, the sorghum malts made at 20°C and 25°C produced worts which contained more glucose than worts of malt made at 30°C. Although barley malts contained more α-glucosidase activity than sorghum malts, the worts of barley had the lowest levels of glucose. The limitation to maltose production in sorghum worts, produced at 65°C, is due to inadequate gelatinization of starch and not to limitation to β-amylase and α-amylase activities. Gelatinization of the starch granules of sorghum malt in the decantation mashing procedure resulted in the production of sorghum worts which contained high levels of maltose, especially when sorghum malt was produced at 30°C. Although the β-amylase and α-amylase levels of barley malt was significantly higher than those of sorghum malted optimally at 30°C, sorghum worts contained higher levels of glucose and equivalent levels of maltose to those of barley malt. It would appear that the individual activities of α-glucosidase, α-amylase and β-amylase of sorghum malts or barley malts do not correlate with the sugar profile of the corresponding worts. In consequence, specifications for enzymes such as α-amylase and β-amylase in malt is best set at a range of values rather than as single values.  相似文献   

11.
Free α-amino nitrogen (FAN) is an essential nutrient for yeast growth during fermentation. Under normal conditions of sorghum beer mashing, 60°C at pH 4.0, production of FAN by proteolysis accounts for approximately 30% of wort FAN, the remaining 70% being preformed in the malt and adjunct. The quality of the FAN in sorghum beer worts is good as it does not contain a high percentage of proline. Optimum conditions for FAN production during mashing are 51°C and pH 4.6. Wort FAN was increased proportionally by raising the ratio of sorghum malt to adjunct and conversely decreased by raising the ratio of adjunct to malt. FAN was also increased by the addition to the mash of a microbial proteolytic enzyme. Wort FAN is directly proportional to malt FAN.  相似文献   

12.
Barley malt is the preferred brewing material these days because of its high extract content and high enzyme activities. However, when substituting malted barley with oats to create a unique beer flavor and aroma, endogenous malt enzymes become the limiting factor. Therefore, the objectives of this study were to evaluate the effect of 10–40 % unmalted oats on the quality of high-gravity mashes/worts and to investigate the limitations of endogenous malt enzymes as well as the benefits of the application of industrial enzymes. The enzyme mix Ondea® Pro was found to be particularly suitable for mashing with unmalted oats and was therefore used in the present rheological tests and laboratory-scale mashing trials. In order to gain detailed information about the biochemical processes occurring during mashing, the quality of mashes was comprehensively analyzed after each mash rest using standard methods described by Mitteleuropäische Brautechnische Analysenkommission and Lab-on-a-Chip capillary electrophoresis. Mashing with up to 40 % oats resulted in increased mash consistencies, color/pH (20 °C) values, β-glucan concentrations, wort viscosities 12.0 %, and filtration times as well as decreased FAN and extract contents. The application of Ondea® Pro enormously increased the color of worts despite lower pH values but considerably improved the quality and processability of 30 or 40 % oat-containing mashes/worts. However, the substitution of up to 20 % barley malt with unmalted oats can easily be realized without the addition of exogenous enzymes.  相似文献   

13.
The effects on wort quality when mashing with unmalted sorghum (0–100%) and malted barley (100–0%) in combination with industrial enzymes were evaluated. A mashing program with temperature stands at 50°C, 95°C and 60°C was used. Different combinations of commercial enzymes were evaluated. A heat stable α‐amylase was found to be essential for efficient saccharification. The inclusion of a fungal α‐amylase in mashes with a high sorghum content improved filtration rates to that of 100% malted barley mashes. Addition of a bacterial protease increased the amount of nitrogen solubilisation and peptide degradation. An increase of the relative proportion of sorghum in the grist resulted in decreases in wort filtration, colour, viscosity, attenuation limit, free amino nitrogen, high molecular weight nitrogen, and a corresponding increase in pH (p < 0.01). Overall the addition of malted barley in small proportions to unmalted sorghum mashes together with commercial enzymes was found to improve the potential for brewing a high quality lager beer from unmalted sorghum.  相似文献   

14.
The influence of two factors, total concentration and fraction of three pairs of commercial enzymes, which showed statistical significance (Biocellulase W with Hitempase 2XL, Biocellulase W with Amylo 300 and Amylo 300 with Hitempase 2XL), were studied for their overall effect on buckwheat wort quality using response surface methodology (RSM). This study revealed that the addition of increasing levels of Hitempase 2XL to the buckwheat mash increased colour, extract levels, wort filtration, fermentability and total fermentable extract (TFE), along with decreasing viscosity values. Results also determined a high level of fermentability when an enzyme combination of 30% Biocellulase and 70% Hitempase was added to the mash. The addition of increasing levels of Amylo 300 to buckwheat mashes resulted in increases in fermentability and total fermentable extract (TFE), along with increases in total soluble nitrogen (TSN), free amino nitrogen (FAN) and Kolbach index (KI). With regard to the proposed optimal regime, although no synergistic effect was found when the three enzymes were used together, the optimum conditions for the production of buckwheat wort with lowest viscosity, highest extract and optimal fermentability were achieved using a joint model. Overall, the findings of this study demonstrate the feasibility of producing wort suitable for the brewing of gluten‐free beer from 100% malted buckwheat with careful optimisation of enzyme types and dosage levels.  相似文献   

15.
Studies carried out on normal husked barley, normal hull‐less (naked) barley, acid dehusked barley and acid dehusked hull‐less barley, as well as the malts derived from them, showed that when acid dehusked barley samples (obtained from either husked or hull‐less barley), were processed using commercial enzyme preparations, they produced more alcohol when compared with the alcohol yield obtained from the barley samples from which the acid dehusked samples were derived. When the husked (Optic) control, acid dehusked and hull‐less barley samples were malted, Optic control barley produced malt that gave higher dextrinising units (DU) and diastatic power (DP), whilst acid dehusked Optic and hull‐less barley produced malts that gave similar DU results on day 5 of the germination time. When mashed, acid dehusked (Optic) barley malt produced wort that filtered faster than the wort obtained from the malt made from hull‐less barley. This observation is very important because it shows that the husk of the barley is not the only factor that determines the filtration performance of the malted barley, since both the malt samples made from husked and acid dehusked barley had similar filtration rates on day 5 of the germination time. The slow filtration rate observed for the wort made from hull‐less barley suggests that other factors play some role during the filtration of the mash made from hull‐less barley malt. Although hull‐less malt appeared to develop lower DU and DP enzyme activities, when compared with the values obtained for the Optic control, hull‐less barley malted faster and produced optimum predicted spirit yield (PSY) at day 4 of the germination time. In contrast, the control husked Optic barley malt that had higher DU and DP produced equivalent (optimum) predicted spirit yield one day later at 5 days germination time. This is an advantage for hull‐less barley, both in terms of time and energy saving during the malting of barley. Although the acid dehusked Optic barley produced more alcohol than the husked control when commercial enzyme preparation was used to process barley, it was surprising that when the derived malt was assessed, it gave a lower predicted spirit yield than the husked control, even though it produced a higher amount of hot water extract (HWE). The higher extract yield and lower predicted spirit yield obtained from the malt made from acid dehusked malt confirmed that high extract yield is not necessarily associated with high fermentable extract.  相似文献   

16.
In this study four strains of lactic acid bacteria (LAB) were chosen to bioacidify a mash containing 50% barley and 50% malt. The strains were isolated from malted and unmalted barley and assayed for extracellular enzymatic activities (proteases, amylases, β‐glucanases). The biologically acidified mash was compared to a chemically acidified mash, 100% malt mash un‐acidified and 50% malt and 50% barley mash unacidified. Characteristics such as pH, extract, colour, viscosity, total soluble nitrogen (TSN), free amino nitrogen (FAN), apparent fermentability, β‐glucan and lautering performance of the resultant worts were determined. A model lautering system replicating one used in a brewery was designed and built in University College Cork (UCC) to measure the lautering performance of the bioacidified mashes. The new system was compared to the filtration method used in EBC method 4.5.1. Overall the addition of LAB to bioacidify a mash of 50% barley and 50% malt resulted in faster filtration times, which correlated with decreased β‐glucan levels. Proteolytic LAB had a positive influence on the quality of wort and resulted in increased FAN levels. Lighter colour worts were observed along with increased extract levels.  相似文献   

17.
Pilot scale (1000 L) brews were carried out with a grist comprising of unmalted sorghum (50% of total wet weight of grain) (South African variety) and malted barley (50% of total wet weight of grain) grist using a mashing program with rests at 50°C, 95°C and 60°C. Mashes were supplemented with a high heat stable bacterial α‐amylase, a bacterial neutral protease and a fungal α‐amylase. A control brew containing 100% malted barley was also carried out. Saccharification difficulties were encountered during mashing, and extraction of the grist was lower for the sorghum mashes. The sorghum mashes showed comparable lautering behaviour to that of the control mash. At mashing off the sorghum worts were starch positive. Apparent degree of fermentation of the sorghum gyles were less than the control gyles. Green beer filtration proved unproblematic. The sorghum beers compared quite closely with the control beer with regard to colour, pH and colloidal stability. Foam stability deficiencies were apparent with the sorghum beer. However, the fermentability of the sorghum worts were lower. Hence the sorghum beers were lower in total alcohol. Sensory analysis indicated that no significant differences existed between the sorghum beer and both the control beer and a commercial malted barley beer with regard to aroma, mouth‐feel, after‐taste and clarity. However, the sorghum beer was found to be significantly different to both of the other beers with regard to colour, initial taste and foam stability.  相似文献   

18.
Cold water extract (CWE), cold water soluble protein (CWS-protein), CWS-protein modification and free alpha amino nitrogen (FAN) were determined for three improved Nigerian sorghum cultivars malted under four different steep conditions. The levels of these variables in the sorghum malts differed significantly when malted under identical steep regimes. This indicates that soluble protein accumulation and modification in these grains are cultivar dependent. Grains exposed to a combination of air rest cycles and final warm steeping gave highest values of cold water solubles, CWS-protein modification and FAN. Amylolytic activity was enhanced over the rate of proteolysis when grains were steeped under regimes incorporating final warm steep. Cultivar SK 5912 with highest soluble protein solubilisation activity showed lowest FAN accumulation under all steep regimes suggesting roles for factors other than proteolysis in FAN accumulation.  相似文献   

19.
The metabolism of albumin, globulin, glutelin and prolamin in two varieties of sorghum recommended as alternatives to barley malt for brewing in Nigeria has been studied. There was a continuous degradation of prolamin and glutelin (storage proteins) with a concomitant rise in albumin and globulin (enzyme proteins) resulting in a synchronous rise in free amino nitrogen (FAN) during malting of SK 5912. On the other hand, all the major proteins in farafara increased at the peak of malting without a synchronous increase in FAN. When compared to the unmalted sorghum digested with external enzymes, only a quarter to half of the groups of amino acids required for yeast nutrition were obtained with malted sorghum. The production of FAN in SK 5912 malt is higher than farafara malt. FAN produced in SK 5912 malt is high enough for lager beer production therefore its recommendation as a local substitute is supported, in part, by this study. © 1997 SCI.  相似文献   

20.
The diastatic power of the freshly kilned sorghum malt at 68.1°WK had a 29% drop after six months of storage. Freshly kilned sorghum malt displayed high wort turbidity (4.9 EBC) which dropped to 0.95 EBC and 1 EBC after 2 and 6 months of storage respectively. The colour of the malt worts faded slightly over the trial period from 7.6 EBC in freshly kilned malt to 6.8 EBC after six months. Extract remained fairly steady throughout the study period most likely due to the use of external amylolytic enzymes during mashing. The protein in extract/protein in grain fluctuated between 46.6% in the freshly kilned malt to 43.2% at the end of six months. The apparent extract after final attenuation (AEFA) indicates more fermentability beginning from two months after storage. Free α‐amino nitrogen (FAN) dropped from 238 mg/L to 194 mg/L after six months of storage. Mash filtration with a micro‐mash filter remained prolonged (86–93 min) throughout the six months of storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号