首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
双向隔离型DC/DC变换器作为电力电子变压器的重要组成部分,在单移相控制下无法有效抑制回流功率,较高的回流功率将产生较大的电感电流应力和输出电压纹波,不利于变换器元件的选择及变压器轻量化的实现。针对上述问题,在双移相控制策略的基础上,提出一种基于最小回流功率的双移相优化控制算法。以抑制系统回流功率作为约束条件,通过优选系统的最优运行点,实现系统回流功率最小。通过硬件实验对所提控制策略进行验证,结果表明在最优运行点下,系统回流功率最小,电感电流应力和输出电压纹波得到有效抑制。  相似文献   

2.
为提升能量路由器中双有源桥(DAB)变换器的传输效率,同时改善系统的动态特性,该文提出一种基于扩展移相的输出电压模型预测控制与梯度下降算法实现回流功率优化的混合控制策略。首先,建立DAB变换器在单移相和扩展移相控制下的传输功率数学模型,分析回流功率产生机理,并推导扩展移相控制下的输出电压状态空间平均化方程;其次,在DAB变换器输出电压模型预测控制基础上提出基于梯度下降算法的回流功率优化策略。搭建小功率实验样机,并与传统单移相控制进行对比,实验结果证明了该文所提控制策略的有效性及正确性。  相似文献   

3.
针对双有源桥(DAB)DC/DC变换器工作于Buck模式下产生的回流功率和电流应力升高的问题,提出了一种基于拉格朗日乘数法的改进扩展移相(EPS)控制方法。根据DAB DC/DC变换器的拓扑结构建立DAB电路的等效模型,确定优化的约束条件。通过约束条件建立拉格朗日函数,求解DAB电路最小回流功率的工作点,进而得到改进EPS控制内移相比与外移相比的变化关系并且确定了控制方法的流程。通过实验对所提改进EPS控制方法进行验证,实验结果表明该控制方法可以同时维持DAB DC/DC变换器输出功率恒定,降低回流功率和电流应力。  相似文献   

4.
针对双有源桥(DAB)DC-DC变换器进行回流功率优化研究,在运用传统双重移相控制(DPS)进行调制,变压器两侧的输入电压跟输出电压不匹配时,回流功率会显著增大。提出一种双重移相的多目标优化控制方法,对双重移相控制的工作原理进行分析,推导出对应的输出功率和回流功率的关系式,以此搭建数学模型,并基于该模型对回流功率进行优化;以KKT作为条件,针对回流功率的最小化问题,解出内外移相角的最优组合;为了迅速改变当前的传输功率,通过虚拟电压补偿方法来实现,从而达到优化系统回流功率的目标;通过MATLAB/Simulink仿真对该方案与传统SPS(单移相控制)方案、传统DPS方案进行对比分析,验证了该方案的有效性及优越性。  相似文献   

5.
针对双有源桥(DAB)DC/DC变换器回流功率优化效果易受电压传输比和传输功率影响问题,建立了DAB变换器在移相控制下的传输功率和两侧回流功率模型,分析并推导了零电压开关(ZVS)软开关边界,并以此为约束条件,提出了一种基于Karush-Kuhn-Tucker(KKT)条件优化算法的两侧回流功率优化方法。基于此,通过功率分段三移相(PSTPS)优化控制,实现了DAB全功率范围内两侧回流功率优化,且所有开关管可实现ZVS软开关。最后,基于搭建的实验平台验证了所提优化方法的正确性和有效性。  相似文献   

6.
基于电压控制的双有源桥(DAB)DC/DC变换器是直流微电网中控制直流母线电压的核心变流器装置,电容电压反馈控制作为DAB控制中的常用策略存在着控制系统增益与传输功率耦合的问题,并且控制性能受恒功率负载的负阻抗特性的影响较大。为优化DAB的控制性能,在充分分析耦合问题产生的原因、恒功率负载的负阻抗特性的影响的基础上提出了一种基于电容能量反馈解耦的优化控制策略。通过电容能量反馈控制消除DAB控制性能与恒功率负载的耦合;结合基于模型的解耦移相控制得到对应的移相控制信号,解除传输功率对控制系统闭环增益的耦合,实现了以DAB为核心的直流微电网控制性能的优化。理论分析与试验结果验证了所提控制策略的有效性  相似文献   

7.
系统地论述了高频环节DC/AC变换技术、高频环节AC/DC变换技术和高频环节AC/AC变换技术的发展与现状,给出了电路结构、拓扑实例、控制策略与特点。用高频变压器替代低频环节电力电子变换器中的工频变压器,有效克服了低频环节电力电子变换器存在的体积与重量大、变压器铜铁用量大、音频噪音大、成本高等缺陷,以及非隔离型电力电子变换器存在的输出与输入无隔离、电压传输比小、电磁干扰(EMI)严重、用电安全性弱等缺陷,显著提高了变流器特性。随着铜、铁原材料和能源的日益紧张及其价格的急剧增长,高频环节电力电子变换技术越来越展现出其独特优势,在电力、通讯、航空等传统领域和新能源发电、智能电网等新兴领域均具有重要的应用价值。  相似文献   

8.
吴剑  石健将  张至愚 《电源学报》2015,13(2):17-26,32
三相固态变压器是适用于智能电网的一种新型的智能电力电子设备,一般包括整流输入级、双有源桥DAB(dual active bridge)直流级和逆变输出级。为解决固态变压器在大功率传输和高输入交流电压工作条件下的高频功率开关管电压电流应力问题,一般采用多模块级联的拓扑结构,但这种拓扑给固态变压器带来了模块间的电压和功率不平衡问题和导致开关管过压过流及电网电流谐波增加等问题。为解决三相模块级联型固态变压器电压、功率的不平衡问题,提出一种新颖的控制策略。输入整流级采用一种基于共同占空比的三相dq0控制策略以保证输入交流电流三相对称,DAB级采用一种基于电压跟随的移相控制方法以实现模块间电压平衡,两级控制策略相配合以实现各模块间电压、功率平衡。仿真和实验均验证了所提控制策略的可行性和有效性。  相似文献   

9.
双有源桥(dual-active-bridge,DAB)DC-DC变换器作为电力电子变压器(power electronic transformer,PET)的核心组成部件,其控制性能直接影响PET的运行稳定性和可靠性。目前,一般采用单移相(singlephaseshift,SPS)方法对其有功功率进行双向调节,同时使二次侧直流母线电压保持稳定。而DAB二次侧直流母线电压的稳定性除了受输出级功率波动的影响外,还与一次侧直流母线电压扰动有关?本文同时考虑这2个影响因素,以三级式PET为例提出了一种基于系统功率平衡的控制策略?根据DAB的有功功率计算公式引入移相比因子,利用PI控制器实时调整移相比因子的大小,实现了对DAB二次侧直流母线电压的控制;将一次侧直流母线电压加入前向控制通道,使其与被控对象中的相同因子抵消,从而抑制了一次侧直流母线电压扰动的影响;考虑滤波电感的瞬时能量波动,计算出输出级逆变器的瞬时有功功率,并将其作为前馈扰动项加入到控制环路中,能有效衰减输出级功率变化引起的二次侧直流母线电压波动。最后,在一台380V/15kW的实验室样机上通过仿真和实验,对所提控制策略的稳态和动态响应性能进行了验证,证明了其有效性,同时,该方法还可推广到高压大容量PET应用中。  相似文献   

10.
正电力电子变压器是由高频变压器和AC/DC, AC/AC,DC/AC等电力电子变换环节构成的新型设备,通常其高压、低压侧均提供交流、直流端口,可实现电能的多向流动。电力电子变压器不仅具有传统铁芯式交流变压器全部功能,还可实现交流侧无功功率补偿、谐波治理、新能源/储能设备直流接入、端口间故障隔离等新功能。  相似文献   

11.
研究适用于直流配电网的模块化多电平换流器H桥(MMC-H)型直流变压器,其由模块化多电平(MMC)桥臂、H桥和交流变压器组成。MMC采用阶梯波调制,H桥采用方波调制。推导出基于移相控制的传输功率与回流功率表达式,总结影响回流功率的因素与零回流功率的边界条件。为抑制回流功率,提出了变频优化策略,通过工作频率的变化来调节移相比落入零回流功率区域,减小回流功率与电流应力。最后,搭建实验平台对变频优化控制策略进行验证,实验结果表明变频优化控制策略能够调节移相比,降低电流应力与损耗,提高直流变压器效率。  相似文献   

12.
高频模块化直流变压器(HMDCT)是构建直流电网的核心设备。HMDCT在传统移相(TPS)控制下的高频交流不匹配工作状态会带来较大的高频电流应力与回流功率,降低了HMDCT的传输效率,因此解决该技术瓶颈成为进一步促进HMDCT在直流电网中应用的关键。鉴于此,提出了一种基于桥臂子模块动态投切技术的HMDCT交流链匹配移相(MPS)控制策略。由分析及实验结果可知,当采用交流链MPS控制策略时,不论HMDCT两端的直流电压变比如何,HMDCT的交流链电压均能够保持在匹配工作状态;且在传输功率相同时,相比于TPS控制,交流链MPS控制具有更小的回流功率及更高的效率。通过样机实验对理论分析的正确性与有效性进行了验证。  相似文献   

13.
针对交直流配电网的需求,提出了一种可应用于交直流配电网的电力电子变压器(power electronic transformer,PET)拓扑。与传统PET相比,该拓扑的优势在于为直流电源及直流负荷提供了接口,具备直流故障穿越能力,能够显著减少网络中换流器的数量,提高供电可靠性。同时,分析了新型PET在典型交直流配电网中的运行模式,并在此基础上,对PET各级的控制及调制策略进行了设计。最后,通过仿真验证了该拓扑及控制策略的合理性,突出了PET在交直流配电网中的能量调控作用。  相似文献   

14.
将交/直/交级联变换器、直流变换器、储能及其变换器通过公共直流母线组合,构成含两个交流端口、三个直流端口的电能路由器拓扑结构。分析典型运行模式并提出储能稳压的交直流混合电能路由器虚拟同步机协调控制策略:在交流单/双端并网模式下,通过储能稳定直流电压,两端交/直、直/交变换器通过虚拟同步机功率外环控制功率流向及大小;在交流双端离网模式下,通过储能稳定直流电压的同时,配合分布式电源为交直流负荷供电。所提策略无需模式切换,降低了控制复杂性,可实现电能路由器各模式下直流电压稳定、就地消纳分布式发电,保证交直流负荷持续稳定供电,还可实现双端并网时电网馈线间的柔性互联、电网故障时潮流转供以及双端离网下的自稳定运行,有效提高了低压配电网的供电可靠性。最后,通过仿真和实验验证了所提协调控制策略的正确性和有效性。  相似文献   

15.
传统交流组网风电场系统存在多次电能转换、成本高的问题。针对这个问题,设计了一种大容量直驱风电机组级联直流组网海上风电场系统,其直接将每台机组的直流输出级联形成高压直流进行传输,而无需额外的海上升压站平台。风电机组采用了永磁直驱风力发电机及其变流器,其中变流器包括了AC/DC单元和DC/DC单元,并设计了控制策略,即通过DC/DC单元的占空比调节来实现电流的持续输出和最大功率跟踪。陆基逆变电站采用晶闸管型逆变器,设计了工作模式和控制策略,其主要功能是实现高压直流链路的电压电流调节。最后,基于PSCAD/EMTDC仿真平台,搭建了容量为150 MW的风电场系统进行了仿真计算,计算结果验证了该系统具有较高的鲁棒性和对风速变化的适应性,同时每个机组都能独立的实现最大风能捕获。  相似文献   

16.
易文飞  王鑫 《现代电力》2021,38(3):339-345
多端口电力电子变压器(Power Electronic Transformer,PET)可以在交直流混合配电网建立功率柔性调节的通路,实现多个交直流混合配电区域间电能互联互济.提出一种基于多端口PET的交直流混合配电网日前经济运行策略.首先基于交直流混合配电网典型拓扑,分析含PET交直流配网的灵活调控能力;然后根据PE...  相似文献   

17.
针对多台电力电子变压器构成的交直流混合系统中,电力电子变压器端口运行模式复杂,组合多样的问题,提出了一种基于广义交直流下垂控制的电力电子变压器运行策略优化组合方法,在保证系统安全运行的同时保证可再生能源的充分消纳。广义交直流下垂控制可通过控制系数的调整来近似端口运行模式的切换,避免了在非线性规划模型中引入整数变量,有效降低了模型的复杂度。在此基础上,建立了考虑可再生能源不确定性的电力电子变压器运行策略鲁棒组合优化模型,并进一步采用双层优化方法对所提模型进行求解,算例仿真结果证明了该方法的有效性与可行性。  相似文献   

18.
高功率密度单相变换器的直流有源滤波器研究   总被引:2,自引:0,他引:2  
单相变换器系统会产生二次脉动功率,使直流母线电压出现二次脉动,危害整个系统。一般采用在直流侧并联大电容或LC谐振电路的方法来抑制直流母线电压的二次脉动,但增加了系统的体积和重量,功率密度较低。为提高系统的功率密度,采用了一种能量双向流动的Buck有源滤波器来抑制直流母线电压的二次脉动。推导滤波器完全补偿脉动功率时电容电压和电流方程,并在此基础上针对高压大功率场合提出双闭环无差拍加重复的控制策略。无差拍控制可提高系统阻尼,重复控制可增加稳态精度。从脉动能量存储、控制带宽两方面讨论APF的参数设计。仿真和实验证明了所提方案能显著减小直流侧滤波电容,提高系统功率密度。  相似文献   

19.
为了便于扩展直流微电网的容量与增强系统可靠性,采用双向AC/DC变换器并联系统来实现直流微电网与大电网之间的能量交互。提出了一种直流微电网双向AC/DC变换器并联系统的低电压偏移功率均分控制策略,通过反馈直流线路的平均电流作为全局变量,并引入积分环节,实现了各变换器的功率精确分配而不受线路参数的影响。通过引入平均输出电压比例积分控制,减小了直流母线电压的偏移。探讨了二次纹波电流对并联系统功率控制的影响,引入带阻滤波器,抑制二次纹波电流和电压对并网电流畸变率的影响。分析了变换器并联系统的稳定性,给出了合适的控制参数。最后,仿真验证了所提出的控制策略的有效性。  相似文献   

20.
应用于船舶中压直流系统的电力电子配电变压器   总被引:1,自引:0,他引:1       下载免费PDF全文
中压直流系统适合应用于大型船舶,能够减少系统体积重量,提升运行能效。但是目前直流断路器和直流配电研究进展缓慢,限制了直流系统的应用。电力电子变压器由电力电子变换器和高频变换器组成,拥有高效率和高功率密度的特点,适用于船载的配电应用。在分析对比了几种直流变压器拓扑的基础上,提出将串联输入并联输出(ISOP)双主动桥(DAB)变换器用作船载配电变压器,研究了该拓扑的调制和控制方案,并通过实验进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号