首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavior of ignition and combustion of coal particle cluster under a quiescent condition was numerically simulated by solving balance equations of mass and enthalpy with combustion kinetic models of volatiles and char. Two-flame structure, one flame penetrating into the cluster and the other moving out of the cluster, was predicted during the combustion of coal particle cluster. Effects of radiative heat transfer, group number, ambient temperature, coal particle size, and oxygen concentration on ignition and combustion of coal particle clusters were also analyzed. Simulations indicated that the gas volume fraction of coal particle cluster increases with time after devolatilization. Gas velocity passing through the cluster surface varied significantly at volatile liberation. The ignition time delay was reduced with the increase of ambient temperature. The cluster devolatilization rate and char burning rate increased while the ignition time delay decreased with the increase of ambient oxygen concentration.  相似文献   

2.
Analysis of devolatilization of predried large coal particles in fluidized beds requires consideration of both the chemical kinetics of coal decomposition and transport processes. Models available either assume the devolatilization particle to be isothermal (whereas it may be shown that, in general, large temperature gradients may exist within the particle) or require extensive numerical integration procedures. This Paper describes a model which permits formulation of analytical and easy-to-use equations for the estimation of the devolatilization history of a large predried coal particle in a fluidized bed. The model predictions are compared with experimental data collected for Mississippi lignite. A correlation is proposed for the estimation of the total devolatilization time. The analytical solutions presented may be used with ease in coupling the devolatilization process to the other phenomena, such as drying and/or combustion of volatiles and residual char, occuring during fluidized bed combustion of coal.  相似文献   

3.
John F. Stubington 《Fuel》1984,63(7):1013-1019
Coal particles with diameters of 3–11 mm were injected into a small, hot bed of sand fluidized by nitrogen. Volatiles evolution was followed by sampling the exit gas stream and subsequent analysis by gas chromatography. Three Australian coals covering a range of volatile matter were studied and the effects of coal particle size and bed temperature were determined. The yields of gaseous components, char and tar are explained by consideration of the competitive reactions for coal hydrogen and oxygen and secondary reactions of the volatile species within the coal particle. The pore structure developed during devolatilization has a significant effect on the extent of these secondary reactions. It is concluded that heat transfer is the main process controlling the volatilization time in fluidized bed combustors. The time required for heat transfer into the coal particle, determined by calculation and experiment, agrees with the measured volatilization time. Significant factors are external heat transfer to the surface of the particle, internal conduction through the coal substance and radiation through the pores, and the counterflow of volatiles out of the coal particle. For different coals, variations in the volatilization time appear to be caused by the development of different pore structures, which affect radiant heat transfer through the pores.  相似文献   

4.
Devolatilization and combustion of large particles of Eastern Canadian coals (Evans and Minto), 5-50 mm dia., were studied in a bench-scale atmospheric fluidized bed reactor at 1023-1173 K with 0.5 mm sand particles as the bed material. The devolatilization time, mass loss history, changes in proximate volatiles content and C/H mass ratio, and temperature history at the centre of the particle during devolatilization were determined. The mass loss during devolatilization is correlated with the proximate volatiles content of the parent coal. The devolatilization time is correlated with the initial particle diameter by a power-law relation with an exponent of 1.54-1.64. The results show insignificant effect of superficial velocity on devolatilization.  相似文献   

5.
Three Canadian coals of different rank were gasified with air‐steam mixtures in a 0.1 m diameter spouted bed reactor at pressures to 292 kPa, average bed temperatures varying between 840 and 960°C, and steam‐to‐coal feed ratios between 0.0 and 2.88. In order to analyze gasifier performance and correlate data, a three‐stage model has been developed incorporating instantaneous devolatilization of coal, instantaneous combustion of carbon at the bottom of the bed, and steam/carbon gasification and water gas shift reaction in a single well mixed isothermal stage. The capture of H2S by limestone sorbent injection is also treated. The effects of various assumptions and model parameters on the predictions were investigated. The present model indicates that gasifier performance is mainly controlled by the fast coal devolatilization and char combustion reactions, and the contribution to carbon conversion of the slow char gasification reactions is comparatively small. The incorporation of tar decomposition into the model provides significantly closer predictions of experimental gas composition than is obtained otherwise.  相似文献   

6.
Robert D. LaNauze 《Fuel》1982,61(8):771-774
Experimental data for devolatilization of coal in sizes and at operating conditions pertinent to fluidizedbed combustors are examined. The time for devolatilization is shown to be characteristic of a diffusion-limited situation. A model, in which the diffusion of the volatiles outwards through the char is the rate-controlling step, is shown to agree with the data.  相似文献   

7.
Coal is an important energy resource for meeting the future demand for electricity, as coal reserves are much more abundant than those of other fossil fuels. In this study, the percolation model, which can account for swelling due to devolatilization and ash agglomeration, is applied to particulate matter formation process in coal combustion, and the effects of coal properties, ambient temperature, ambient pressure and initial coal size on the characteristics of a burning coal particle are studied. The devolatilization rate of coal is given by the first-order reaction model with FLASHCHAIN® model [Niksa, S., Combust. Flame, 100, (1995) 384-394.]. The characteristics of a burning coal particle are investigated under the atmospheric and high pressure conditions. The results show that in the atmospheric pressure condition, the characteristics of the burning coal particle obtained by the percolation model are in general agreement with the experimental data. The particle diameter of Newlands coal with higher fuel ratio and ash content is larger than that of Plateau coal in the char-combustion-dominant process. As the ambient temperature increases, the particle diameter becomes small in the early stage of the char-combustion-dominant process, but becomes large afterward. The porosity in the char-combustion-dominant process decreases with decreasing the initial coal size. It is also observed that the effect of ambient pressure is prominent in the char-combustion-dominant process. The particle diameter and porosity in the pressurized condition are greater than those in the atmospheric pressure condition. These behaviors can be explained by the interaction between char reaction and ash agglomeration.  相似文献   

8.
A model for the devolatilization of coal in a non-combusting fluidized bed is proposed. Previous studies have either considered devolatilization as a non-rate process or assumed the devolatilization coal particle as isothermal. The assumption of an isothermal particle requires the heat transfer Biot number ?0.02. In view of the larger Biot numbers predicted using existing fluidized bed gas-solid heat exchange correlations and reported values for thermophysical properties, the present model considers the devolatilizing particle to be, in general, non-isothermal. The temperature profiles are computed from the analytical solution of the one-dimensional spherical coordinate unsteady heat transport equation with a convective boundary condition. The temperatures are then used in the non-isothermal coal decomposition kinetic expression proposed by Anthony et al., integrated over the particle to obtain the fractional volume average devolatilization at any given time. Parametric studies show a chemical kinetics controlled regime for small particles, a heat transfer controlled regime for larger particles and a mixed regime for intermediate particle sizes. The extent of the mixed regime depends on the type of coal as well as the operating conditions. The model results are also compared with the fluidized CH4 and CO evolution data reported in the literature for various particle sizes and different temperatures.  相似文献   

9.
Devolatilization of Mongolian coal (Baganuur coal (BC), Shievee Ovoo coal (SOC), and Shievee Ovoo dried coal (SOC-D)) was investigated by using bench-sized fixed-bed and rotary kiln-type reactors. Devolatilization was assessed by comparing the coal’s type and dry basis, temperature, gaseous flux, tar formation/generation, devolatilization rate, char yield, heating value, and the components of the raw coal and char. In the fixed bed reactor, higher temperatures increased the rate of devolatilization but decreased char production. BC showed higher rates of devolatilization and char yields than SOC or SOC-D. Each coal showed inversely proportional devolatilization and char yields, though the relation was not maintained between the different coal samples because of their different contents of inherent moisture, ash, fixed carbon, and volatile matter. Higher temperatures led to the formation of less tar, though with more diverse components that had higher boiling points. The coal gas produced from all three samples contained more hydrogen and less carbon dioxide at higher temperatures. Cracking by multiple functional groups, steam gasification of char or volatiles, and reforming of light hydrocarbon gas increased with increasing temperature, resulting in more hydrogen. The water gas shift (WGS) reaction decreased with increasing temperature, reducing the concentration of carbon dioxide. BC and SOC, with retained inherent moisture, produced substantially higher amounts of hydrogen at high temperature, indicating that hydrogen production occurred under high-temperature steam. The continuous supply of steam from coal in the rotary kiln reactor allowed further exploration of coal gas production. Coal gas mainly comprising syngas was generated at 700–800 °C under a steam atmosphere, with production greatest at 800 °C. These results suggest that clean char and high value-added syngas can be produced simultaneously through the devolatilization of coal at lower temperature at atmospheric pressure than the entrained-bed type gasification temperature of 1,300–1,600 °C.  相似文献   

10.
Single particle devolatilization followed by combustion of the residual coal char particle has been analyzed in a batch-fluidized bed. The kinetic scheme with distributed activation energy is used for coal devolatilization while multiple chemical reactions with volume reaction mechanism are considered for residual char combustion. Both the models couple kinetics with heat transfer. Finite Volume Method (FVM) is employed to solve fully transient partial differential equations coupled with reaction kinetics. The devolatilization model is used to predict the devolatilization time along with residual mass and particle temperature, while the combined devolatilization and char combustion model is used to predict the overall mass loss and temperature profile of coal. The computed results are compared with the experimental results of the present authors for combustion of Indian sub-bituminous coal (15% ash) in a fluidized bed combustor as well as with published experimental results for coal with low ash high volatile matter. The effects of various operating parameters like bed temperature, oxygen mole fraction in bulk phase on devolatilization time and burn-out time of coal particle in bubbling fluidized bed have been examined through simulation.  相似文献   

11.
利用微型流化床加热速度快、温度分布均匀以及气体近平推流等优势,在直径20 mm自动控温的微型流化床反应分析仪中研究了粒度分布为1.7~3.35 mm和0.12~0.23 mm两种典型尺寸燃煤颗粒在790~900℃温度范围内的富氧燃烧行为。通过快速响应过程质谱对燃烧产生的烟气进行实时监测,成功地识别和记录了粗颗粒燃烧过程中经历的挥发分燃烧和原位新生半焦燃烧两个主要阶段。挥发分析出速度最快,然后快速燃烧,而半焦燃烧速度较慢。相比之下,细颗粒燃烧的这两个阶段具有几乎相同的速率,因而相互耦合而难以区分。根据实验结果,挥发分析出和燃烧为快速反应,煤颗粒燃烧过程速率受原位新生半焦燃烧过程控制。进一步研究了挥发分和原位新生半焦燃烧动力学行为,获得其本征动力学的活化能分别为107.2和143.9 kJ/mol。  相似文献   

12.
Ambient-pressure thermogravimetric characterization of four different coals and their chars was performed to obtain fundamental information on pyrolysis and coal and char reactivity for these materials. Using a Perkin-Elmer TGS-1 thermobalance, weight loss as a function of temperature was systematically determined for each coal heated in helium at 40 and 160 °C/min under various experimental conditions, and for its derived char heated in air over a temperature range of 20 to 1000 °C. The results indicate that the temperature of maximum rate of devolatilization increases with increasing heating rate for all four coals. However, heating rate does not have a significant effect on the ultimate yield of total volatiles upon heating in helium to 1000 °C; furthermore, coupled with previous data9 for identical coal samples, this conclusion extends over a wide range of heating rate from 0.7 to 1.5 × 104 °C/s. Using the temperature of maximum rate of devolatilization as an indication of relative reactivity, the devolatilization reactivity differences among the four coals tested that were suggested by this criterion are not large. For combustion in air, the overall coal/char reactivity sequence as determined by comparison of sample ignition temperature is: N. Dakota lignite coal ≈ Montana lignite coal > North Dakota lignite char > III. No. 6 bituminous coal ≈ Pittsburgh Seam bituminous coal > Montana lignite char > III. No. 6 bituminous char > Pittsburgh Seam bituminous char. The reactivity differences are significantly larger than those for devolatilization. The reactivity results obtained suggest that coal type appears to be the most important determinant of coal and char reactivity in air. The weight loss data were fitted to a distributed-activation-energy model for coal pyrolysis; the kinetic parameters so computed are consistent with the view that coal pyrolysis involves numerous parallel first-order organic decomposition reactions.  相似文献   

13.
Y.C. Guo  K.S. Lau 《Fuel》2003,82(8):893-907
A pure two-fluid model for turbulent reacting gas-particle flow of coal particles is developed using a unified Eulerian treatment of both the gas and particle phases. The particles' history caused by mass transfer due to moisture evaporation, devolatilization and char reaction is described. Both velocity and temperature of the coal particles and the gas phase are predicted by solving the momentum and energy equations of the gas and particle phases, respectively. A k-ε-kk two-phase turbulence model, EBU-Arrhenius turbulent combustion model and four-flux radiation heat transfer model are incorporated into a comprehensive model. The above comprehensive mathematical model is used to simulate two-dimensional gas-particle flows and pulverized coal combustion in a newly designed tubular oxygen-coal combustor of blast furnace. Predicted results of isothermal gas-particle flows are in good agreement with those obtained by measurements. The results also show that the proposed tubular oxygen-coal combustor prolongs the coal particle residence time and enhances the mixing of coal and oxygen. Results indicate that smaller coal particles of 10 μm diameter are heated and devolatilized rapidly and have volatile combustion in the combustor, while larger coal particles of 40 and 70 μm in diameter are heated but not devolatilized, and combustion of such particles does not occur in the tubular combustor.  相似文献   

14.
Lian Zhang  Eleanor Binner  Chun-Zhu Li 《Fuel》2010,89(10):2703-6646
Experimental investigation of the combustion of an air-dried Victorian brown coal in O2/N2 and O2/CO2 mixtures was conducted in a lab-scale drop-tube furnace (DTF). In situ diagnostics of coal burning transient phenomena were carried out with the use of high-speed camera and two-colour pyrometer for photographic observation and particle temperature measurement, respectively. The results indicate that the use of CO2 in place of N2 affected brown coal combustion behaviour through both its physical influence and chemical interaction with char. Distinct changes in coal pyrolysis behaviour, ignition extent, and the temperatures of volatile flame and burning char particles were observed. The large specific heat capacity of CO2 relative to N2 is the principal factor affecting brown coal combustion, which greatly quenched the ignition of individual coal particles. As a result, a high O2 fraction of at least 30% in CO2 is required to match air. Moreover, due to the accumulation of unburnt volatiles in the coal particle vicinity, coal ignition in O2/CO2 occurred as a form of volatile cloud rather than individual particles that occurred in air. The temperatures of volatile flame and char particles were reduced by CO2 quenching throughout coal oxidation. Nevertheless, this negative factor was greatly offset by char-CO2 gasification reaction which even occurred rapidly during coal pyrolysis. Up to 25% of the nascent char may undergo gasification to yield extra CO to improve the reactivity of local fuel/O2 mixture. The subsequent homogeneous oxidation of CO released extra heat for the oxidation of both volatiles and char. As a result, the optical intensity of volatile flame in ∼27% O2 in CO2 was raised to a level twice that in air at the furnace temperature of 1273 K. Similar temperatures were achieved for burning char particles in 27% O2/73% CO2 and air. As this O2/CO2 ratio is lower than that for bituminous coal, 30-35%, a low consumption of O2 is desirable for the oxy-firing of Victorian brown coal. Nevertheless, the distinct emission of volatile cloud and formation of strong reducing gas environment on char surface may affect radiative heat transfer and ash formation, which should be cautioned during the oxy-fuel combustion of Victorian brown coal.  相似文献   

15.
Coal pyrolysis has been studied to determine conditions for maximum liquid yields from some Western Canadian coals. Gas, tar and char yields were determined for four coals in a 12.8 cm dia. reactor. A characteristic temperature for maximum tar yield existed for each coal at a fixed feed rate and particle size. A steady increase in tar yield was found as the average coal particle size was reduced from 2.28 to 0.65 mm. Composition of gas, and ultimate analyses of tar and char are presented as a function of operating temperature. A simple first-order devolatilization model adequately describes the effects of coal feed rate, reaction time, and temperature on the yield of volatiles, but is insufficient to describe particle size effects.  相似文献   

16.
顾Fan 《煤炭转化》1993,16(4):62-67
本文以三种典型煤的碳燃烧为研究对象,分别采用简单一维沉降燃烧方式和等温加热燃烧方式,实验研究了煤在快速加热条件下,其碳的初期和中,后期燃烧过程。以实验为基础,建立了煤的碳燃烧模型,变工况数值模拟了煤的碳燃烧过程,揭示了煤不同条件下的单颗粒碳燃烧特性。  相似文献   

17.
无焰富氧燃烧是煤粉清洁燃烧技术的前沿发展方向之一,可在捕集高浓度CO2的同时显著降低NOx排放,并提升富氧燃烧稳定性和热力性能。计算流体力学(CFD)作为燃烧研究的重要手段之一,具有快捷、成本低和数据丰富等优点,有效促进了无焰富氧燃烧技术发展。基于笔者团队对煤粉富氧燃烧和无焰燃烧的多年研究积累,对近十几年来煤粉无焰富氧燃烧CFD模拟方法和模拟研究进展进行了总结:首先强调了煤粉无焰燃烧的试验和数学定义,其由于存在非均相反应而区别于气体燃料无焰燃烧;然后详述了煤粉无焰富氧燃烧CFD模拟方法进展,包括模拟流动、传热、燃烧和污染物生成方面的子模型和机理,其中考虑强烈烟气卷吸的可实现k-ε湍流模型、P1或DO辐射模型及针对富氧气氛修正的WSGG气体辐射模型、CPD挥发分析出模型、考虑湍流与化学反应交互的有限速率EDC均相燃烧模型、针对无焰及富氧燃烧开发验证的均相反应机理、考虑气化反应的多步表面焦炭非均相燃尽模型、含氮化学详细反应机理氮转化模拟、动态自适应反应机理加速算法等可显著提高煤粉无焰富氧燃烧的模拟精度和计算效率。总结了煤粉无焰富氧燃烧在基准对照试验、微观反应区域分析、宏观反应特征、污染物生成及大型化锅炉概念设计方面的模拟研究情况;最后以大涡模拟、燃烧模型、高精度反应机理及动态自适应反应机理、工业应用优化等角度展望了煤粉无焰富氧燃烧CFD研究的发展方向。  相似文献   

18.
Several reaction mechanisms exist in the literature for the gasification of char/carbon particles. The general procedure for modelling particle gasification is to assume a mechanism of combustion, obtain the theoretical burning rate and particle temperature, and then validate the mechanism by comparing the results with experimental data. The present work shows that the burning rate and particle temperature are independent of heterogeneous and homogeneous reaction mechanisms and their rate kinetics as long as the oxygen (O2) and carbon dioxide (CO2) concentrations at the burning surface are low compared to carbon monoxide (CO) concentration. Experimental data are cited which are in agreement with the model's predictions for both particle temperatures and burning times. The relevance of the results to industrial combustors is discussed.  相似文献   

19.
旷戈  张济宇 《化工学报》2006,57(1):140-145
引言 煤焦燃烧动力学的研究对确定燃煤特性、燃烧效率、锅炉设计及环境排放等具有重要意义与应用价值.煤焦的燃烧为典型的多孔颗粒的气固反应过程,其主要受到外扩散控制、内扩散控制和化学反应控制的影响.要研究化学反应本身对燃烧过程的影响就需要在实验设计中消除内、外扩散对燃烧过程的影响,或者通过理论或实验的定量计算将内、外扩散的影响予以扣除[1-5];但是,进行理论或实验定量计算内、外扩散的影响实际是建立在经验公式的基础上,对不同体系及物料会引起难以预测的误差.一般说来,实验设计中消除内、外扩散的影响可通过减小煤粒大小和提高气流速度等方式实验确定[4,5].本研究拟采用热失重分析技术,基于煤焦颗粒在热天平中燃烧反应过程的分析,寻找确定燃烧过程中已消除内、外扩散影响的化学反应控制阶段的方法,以获得煤焦颗粒燃烧过程本征化学反应常数及其简便计算方法.  相似文献   

20.
煤炭储量丰富,尽管新能源和可再生能源快速发展,煤炭资源在未来几十年仍将作为我国一次能源重要组成部分。同时煤炭利用带来很多环境污染问题,因此未来煤炭资源的利用逐渐向高效、低碳、低污染物排放利用方式转变。随着光学技术的不断发展,涌现出多种适用于煤粉燃烧诊断的原位非接触式光学诊断技术,极大地促进了燃烧学的发展,为煤炭清洁高效利用提供了更多试验手段。介绍了国内外煤粉着火、不同方式下燃烧特性的光学诊断研究进展,对煤粉单颗粒和煤粉颗粒流的着火燃烧过程的光学诊断研究进行总结。目前常用的煤粉燃烧光学诊断技术主要包括全光谱成像、CH*/C2*化学发光成像、平面激光诱导荧光(PLIF)、双色/三色高温计、米氏散射、激光诱导白炽光、相干反斯托克斯-拉曼光谱、激光诱导击穿光谱等多种先进的光学诊断技术,可对煤粉单颗粒、颗粒流的着火延迟、脱挥发分、挥发分燃烧、着火模式、环境因素(环境温度、氧浓度、气氛)、富氧燃烧、水-氧燃烧、煤中碱金属释放等多方面关键问题进行光学诊断研究,为煤炭清洁高效利用提供了理论和试验基础。采用OH-PLIF和三色高温计对热解半焦和神华烟煤混合燃料共燃的着火和燃烧特性进行研究。综合考虑着火延迟和混合物的燃尽率,热解半焦的最佳掺混比为20%,为热解半焦的实际工业应用提供了参考。同时采用500 Hz、5 k Hz高时间、空间分辨率的OH-PLIF技术探究煤粉颗粒流中单颗粒挥发分燃烧的发展过程和挥发分着火的时序演变过程,通过二者的结合获得煤粉颗粒流从着火到挥发分燃烧的时间特性。采用OH-PLIF技术对烟煤和褐煤煤粉颗粒流燃烧火焰的脱挥发分和挥发分燃烧行为进行探究,提出采用OH信号径向分布的相对标准偏差探究火焰稳定性的方法。相同燃烧条件下,烟煤煤粉颗粒流燃烧的稳定性高于褐煤。基于OH-PLIF和CH*化学发光诊断技术,提出一种用于探究煤粉颗粒流中颗粒挥发分燃烧振荡特性分析方法——动态模态分解方法(DMD)。随着氧浓度的增加,挥发分火焰振荡增强。颗粒的聚集可能导致煤粉挥发分燃烧的低频振荡。相反,单独或分离的颗粒燃烧会产生较大的振荡频率。但目前取得的成果还不够完善,需要继续深入开展煤粉燃烧的光学诊断试验研究,对污染物NOx的生成及排放、新型水氧燃烧技术中水蒸气作用机理等方面深入探索,开发出新型清洁煤燃烧技术,为我国煤炭资源清洁高效利用做出贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号