首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of lightweight sandwich panels consisting of vertically aligned hollow Al–Si alloy tubes as core construction and carbon fiber composite face sheets was designed. The hollow Al–Si alloy tubes were fabricated using precision casting and were bonded to the face sheets using an epoxy adhesive. The out-of-plane compression (i.e. core crushing), in-plane compression, and three-point bending response of the panels were tested until failure. The hollow Ai–Si alloy tubes core configuration show superior specific strength under crushing compared to common metallic and stochastic foam cores. Under in-plane compression and three-point bending, the buckling of face sheets and debonding of hollow cores from the face sheets were observed. Simple analytical relationships based on the concepts of mechanics of materials were provided for the compression tests, which estimate the sandwich panels’ strength with high fidelity. For three-point bending, detailed finite element analysis was used to model the response and initial failure of the sandwich panels.  相似文献   

2.
3.
Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. Residual dent growth inwards toward the mid-plane of a sandwich panel followed by a complete separation of the face sheet is identified as the failure mode. CAI strength of sandwich panels is shown to decrease with increasing impact damage size. Destructive sectioning of sandwich panels is used to characterise damage parameters and morphology for implementation in a finite element model. The finite element model that accounts for relevant details of impact damage morphology is developed and proposed for failure analysis and CAI strength predictions of damaged panels demonstrating a good correlation with experimental results.  相似文献   

4.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

5.
A recently developed sandwich plate twist test is employed here for determination of the transverse shear modulus of the core and twist stiffness (D66) of a sandwich panel consisting of a soft (H45 PVC foam) core and glass/vinylester face sheets. The shear modulus of the H45 PVC foam core extracted from the twist test was in good agreement with shear modulus obtained from ASTM plate shear testing of the foam core. D66 values obtained from the sandwich twist test were in good agreement with predictions from classical laminated plate theory. In addition, the twist test was used to determine the in-plane shear modulus of glass/vinylester laminates isolated and as face sheets in sandwich panels with a stiff (plywood) core. The in-plane shear modulus of the face sheets, isolated and as part of a sandwich panel, was in good agreement with shear modulus determined using the Iosipescu shear test. The results point to the potential of the twist test to determine both in-plane and out-of-plane shear moduli of the constituents of a sandwich structure, as well as D66.  相似文献   

6.
探索了全厚度缝合复合材料闭孔泡沫芯夹层结构低成本制造的工艺可行性及其潜在的结构效益。选用3 种夹层结构形式, 即相同材料和工艺制造的未缝合泡沫芯夹层和缝合泡沫芯夹层结构及密度相近的Nomex 蜂窝夹层结构, 完成了密度测定、三点弯曲、平面拉伸和压缩、夹层剪切、结构侧压和损伤阻抗/ 损伤容限等7 项实验研究。结果表明, 泡沫芯夹层结构缝合后, 显著提高了弯曲强度/ 质量比、弯曲刚度/ 质量比、面外拉伸和压缩强度、剪切强度和模量、侧压强度和模量、冲击后压缩(CAI) 强度和破坏应变。这种新型结构形式承载能力强、结构效率高、制造维护成本低, 可以在飞机轻质机体结构设计中采用。   相似文献   

7.
Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid-structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.  相似文献   

8.
为研究等腰梯形蜂窝芯玻璃钢夹芯板面内压缩破坏机制, 利用材料试验机对夹芯板面内压缩性能进行了试验测试, 并开展了模拟研究。结果表明: 夹芯板的面内压缩破坏方式主要有面板折断、夹芯板屈曲失稳和夹芯板中面板与蜂窝芯脱粘3种类型。面板为夹芯板面内压缩的主要承载构件, 蜂窝芯对面板起到固支作用。面板结构参数与材料参数为影响夹芯板面内压缩抗压强度与抗压刚度主要因素, 多数蜂窝芯的结构参数与材料参数对夹芯板面内压缩抗压强度的影响微弱, 而个别蜂窝芯的结构参数对夹芯板面内压缩抗压刚度的影响比较显著。夹芯板体积一定时, 随着蜂窝芯胞体单元数量的增加, 夹芯板面内压缩的抗压强度与抗压刚度逐渐增大。   相似文献   

9.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

10.
11.
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Rayleigh-Ritz minium energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along the unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has a much higher buckling strength than one having monolithic face sheets.  相似文献   

12.
A plastic micro buckling approach is investigated in order to see whether it can be used to analytically predict the residual strength of carbon fiber sandwich structures.

A parametric study on impact damage resistance and residual strength of sandwich panels with carbon fiber-vinylester faces and PVC foam core is conducted. Two sandwich configurations are studied. The first configuration consists of thin faces and an intermediate density core, representative of a panel from a superstructure. The second configuration consists of thick faces and a high density core, representative of a panel from a hull. Two different impactor geometries are used. One spherical impactor and one pyramid shaped impactor are used in a drop weight rig to inflict low velocity impact damage of different energy levels in the face of the sandwich.

The damages achieved ranges from barely visible damages to penetration of one face. Residual strength is tested using in-plane compression of the sandwich plates either instrumented with strain gauges or monitored with digital speckle photography.  相似文献   


13.
复合材料夹芯板低速冲击后弯曲及横向静压特性   总被引:7,自引:1,他引:6       下载免费PDF全文
对低速冲击后的复合材料Nomex 蜂窝夹芯板进行了纯弯曲和准静态横向压缩实验, 用X 光技术、热揭层技术和外观检测等对板内的损伤进行测量, 分析了被冲击面在受压情况下蜂窝夹芯板的弯曲破坏特点, 对比了横向静压与低速冲击所造成的板内损伤, 讨论了不同横向压缩速度时接触力P-压入位移$h 的变化规律和损伤情况。结果表明: 低速冲击可使蜂窝夹芯板的弯曲强度大幅度降低; Nomex 蜂窝夹芯板对低速冲击不敏感。   相似文献   

14.
To restrict debonding, carbon fiber reinforced lattice-core sandwich composites with compliant skins were designed and manufactured. Compression behaviors of the lattice composites and sandwich columns with different skin thicknesses were tested. Bending performances of the sandwich panels were explored by three-point bending experiments. Two typical failure mechanisms of the lattice-core sandwich structures, delaminating and local buckling were revealed by the experiments. Failure criteria were suggested and gave consistent analytical predictions. For panels with stiff skins, delamination is the dominant failure style. Cell dimensions, fracture toughness of the adhesives and the strength of the sandwich skin decide the critical load capacity of the lattice-core sandwich structure. The mono-cell buckling and the succeeding local buckling are dominant for the sandwich structures with more compliant skin sheets. Debonding is restricted within one cell in bending and two cells in compression for lattice-core sandwich panels with compliant face sheets and softer lattice cores.  相似文献   

15.
A new two-dimensional test system, called the Hydromat Test System, simulates the hydrostatic and hydrodynamic loading conditions which are often present in actual sandwich structures, such as marine hulls. The test fixture uses a square 24 inch×24 inch panel sample which is simply supported all around and has a distributed load provided by a water-filled bladder.

In this study, the Hydromat Test System has been used to obtain data on sandwich panels with orthotropic face sheets and isotropic cores. This data has been compared to analytical expressions for the deflection and the in-plane strains based on small deflection sandwich panel theory. The engineering constants needed for the analytical solution were obtained from characterization tests of the face sheet materials. Core shear properties were obtained experimentally using two different ASTM standards. Four panels, with two different core materials and two different face sheets, were tested. Face sheet properties varied from slightly orthotropic (plane weave) to highly orthotropic (unidirectional), with an axial to transverse tensile moduli ratio of 1.2 and 3.9, respectively. The cores were closed cell foams with both a low and a high shear stiffness.

The analytically obtained center panel deflection varied from 1 to 10% of that obtained by experiment. Most of the analytical tensile strains were less than 10% different from the measured ones. Both experimental deflection and strain data are in excellent agreement with the small deflection theory. It was concluded that the Hydromat Test System provides predictable and repeatable boundary conditions and loading mechanism and is a suitable method for testing soft cored, highly orthotropic sandwich panels.  相似文献   


16.
An experimental study of the in-plane compressive failure mechanism of foam cored sandwich specimens with an implanted through-width face/core debond is presented. Tests were conducted on sandwich specimens with glass/vinylester and carbon/epoxy face sheets over various PVC foam cores. Observation of the response of the specimens during testing showed that failure occurred by buckling of the debonded face sheet, followed by rapid debond growth towards the ends of the specimen. The compression strength of the sandwich specimens containing a debond decreased quite substantially with increasing debond size. A high-density core resulted in less strength decrease at any given debond size. Examination of the failure surfaces after separation of the face sheet and core revealed traces of core material deposited on the face sheet evidencing cohesive core failure. The amount of core material adhered to the face sheet decreased with increasing foam density indicating increasing tendency for core/resin interfacial failure.  相似文献   

17.
The response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect.  相似文献   

18.
The fatigue failure mechanism of a sandwich structure with discontinuous ceramic tile core is characterized. The sandwich structure in consideration comprises ceramic core tiles bonded to composite face sheet with a compliant adhesive layer. The discontinuous nature of the core results in a non-uniform stress field under in-plane loading of the sandwich. Static tensile tests performed on sandwich coupons revealed first damage as debonding at the gaps between adjacent tiles in the core. Tension–tension fatigue tests caused debonding at the gaps followed by initiation of cracks in the adhesive layer between the face sheet and core. Experimental data for crack length versus number of cycles is collected at various load levels. Crack growth rates (da/dN) are determined based on the experimental data acquired. The energy release rate available for crack propagation is computed using an analytical model and finite element analysis. Mode separation performed using the Virtual Crack Closure Technique (VCCT) revealed that crack propagation is completely dominated by shear (mode II). Fatigue crack growth behavior for the discontinuous sandwich structure is quantified by correlating the cyclic energy release rate with the rate of crack propagation. The loss of specimen stiffness with crack propagation is quantified using an analytical model.  相似文献   

19.
Sandwich panels with Kagome lattice cores reinforced by carbon fibers   总被引:2,自引:0,他引:2  
Stretching dominated Kagome lattices reinforced by carbon fibers were designed and manufactured. The sandwich panels were assembled with bonded laminate skins. The mechanical behaviors of the sandwich panels were tested by out-of-plane compression, in-plane compression and three-point bending. Different failure modes of the sandwich structures were revealed. The experimental results showed that the carbon fiber reinforced lattice grids are much stiffer and stronger than foams and honeycombs. It was found that buckling and debonding dominate the mechanical behavior of the sandwich structures, and that more complaint skin sheets might further improve the overall mechanical performance of the sandwich panels.  相似文献   

20.
This paper studied the large amplitude vibration and the nonlinear bending of a sandwich plate with carbon nanotube-reinforced composite (CNTRC) face sheets resting on an elastic foundation in thermal environments. The material properties of CNTRC face sheets are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both CNTRC face sheets and homogeneous core layer are assumed to be temperature-dependent. A detailed parametric study is conducted to study the effects of nanotube volume fraction, core-to-face sheet thickness ratio, temperature change, foundation stiffness and in-plane boundary conditions on the nonlinear vibration characteristics and nonlinear bending behaviors of sandwich plates with functionally graded CNTRC face sheets. The results for the same plate with uniformly distributed CNTRC face sheets are also provided for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号