首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pomegranate (Punica granatum L.) seed oil (PSO) was prepared by supercritical CO2 (SC-CO2) extraction technology. Changes in the yield, chemical composition and free radical-scavenging activity of PSO under different extraction parameters were investigated. The results of SC-CO2 extraction revealed that extraction pressure was the dominant factor to affect the oil yield. PSO was characterized by a high content of punicic acid (approximately 60%) and γ-tocopherol (more than 300 mg/100 g oil). A slight increase in the contents of punicic acid, arachidic acid and gadoleic acid was observed under higher extraction pressure and temperature. At lower pressure or shorter extraction time, PSO with high amount of total tocopherols was obtained. PSO extracted by SC-CO2 showed strong free radical-scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenz-thiazoline-6-sulfonic) diammonium salt (ABTS) radicals and its scavenging ability was correlated with the level of tocopherols in extracted oils.  相似文献   

2.
This work explored the possibility of using supercritical carbon dioxide (SC-CO2) to achieve fractionation of pre-pressed rapeseed (Brassica napus) cake oil at 30–50 MPa, at 40 or 80 °C, and increase the concentration of minor lipids (sterols, tocopherols, carotenoids) in the oil. Minor lipids are partially responsible for desirable antioxidant effects that protect against degradation and impart functional value to the oil. The weight and concentration of minor lipids in oil fractions collected during the first 60 min were analyzed. Cumulative oil yield increased with pressure, and with temperature at ≥40 MPa, but was lower at 80 °C than at 40 °C when working at pressure ≤35 MPa. Differences in solubility between the oil and minor lipids explained fractionation effects that were small for tocopherols. Unlike tocopherols, which are more soluble in SC-CO2 than the oil, sterols and carotenoids are less soluble than the oil, and their concentration increased in the later stages of extraction, particularly at ≥40 MPa, when there was not enough oil to saturate the CO2 phase. Because of the fractionating effects on rapeseed oil composition, there was an increase in the antioxidant activity of the oil in the second half as compared to the first half of the extraction. Consequently, this study suggests that SC-CO2 extraction could be used to isolate vegetable oil fractions with increased functional value.  相似文献   

3.
Extraction of chia seed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the oil solubility and yield, two isobaric (250 and 450 bar) and two isothermal (40 and 60 °C) extraction conditions were selected. The global extraction yield of chia oil increased with pressure enhancement, but temperature had a little influence on it. The maximum oil recovery using SC-CO2 at a mass flow rate of 8 kg/h was 97%, which was obtained at 60 °C, 450 bar for a 138-min extraction. The results showed that solubility changed from 4.8 g oil/kg CO2 at 60 °C–250 bar to 28.8 g oil/kg CO2 at 60 °C–450 bar. The final extract obtained by SC-CO2 under different conditions and Soxhlet extraction contained mainly α-linolenic (64.9–65.6%) and linoleic (19.8–20.3%) acids. SC-CO2 extraction is an interesting alternative methodology because it is possible to achieve a chia oil yield close to that obtained by conventional extraction with a similar fatty acid composition using an environmentally friendly process.  相似文献   

4.
Supercritical fluid extraction of flaxseed oil with carbon dioxide was performed. Effects of particle size, pressure, temperature and the flow rate of supercritical carbon dioxide (SC-CO2) were investigated. Response surface methodology was used to determine the effects of pressure (30–50 MPa), temperature (50–70 °C) and SC-CO2 flow rate (2–4 g/min) on flaxseed oil yield in SC-CO2. The oil yield was represented by a second order response surface equation (R 2 = 0.993) using the Box-Behnken design of experiments. The oil yield increased significantly with increasing pressure (p < 0.01), temperature (p < 0.05) and SC-CO2 flow rate (p < 0.01). The maximum oil yield from the response surface equation was predicted as 0.267 g/g flaxseed for 15 min extraction of 5 g flaxseed particles (particle diameter <0.850 mm) at 50 MPa pressure and 70 °C temperature, with 4 g/min solvent flow rate. Total extraction time at these conditions was predicted as 22 min.  相似文献   

5.
Supercritical fluid extraction of oil from millet bran   总被引:4,自引:0,他引:4  
Proso millet bran [Panicum miliaceum (L.)], variety Dakota White, was extracted with supercritical carbon dioxide (SC-CO2) to yield crude oil. The effects of operating parameters (pressure, temperature, and specific solvent flow) and of features of the raw material (moisture content and particle size) on oil extraction were investigated. Complete de-oiling of ground millet bran pellets was achieved under 300 bar at 40°C with a specific solvent flow of 2–10 h−1 within 200 to 500 min. Solvent requirements were 20–30 kg CO2/kg raw material. Composition of crude SC-CO2 oil extracted under optimal conditions, i.e., fatty acid profile, amount of unsaponifiables, tocopherols, free fatty acids, sterols, sterol esters, waxes, hydrocarbons, and phospholipids, was compared to that of crude oil obtained by petroleum ether extraction. These two oils were similar in terms of fatty acid profile and amount of free fatty acids, unsaponifiables, peroxides, and tocopherols. They differed in respect to phospholipids (present in petroleum etherextracted oil and absent in SC-CO2 extracted oil), metals, and waxes (lower levels in SC-CO2 extracted oil). The effects of extraction procedures on oxidative stability of crude SC-CO2 oil were studied. Ensuring that all pieces of the extractor in contact with the oil were in stainless steel; cleaning the separator, i.e., washing with KOH, rinsing, purging with N2 and CO2, and heating; performing a couple of extractions before the main extraction; and achieving the extraction without interruption all positively influenced the oxidative stability of the oil. Conversely, increasing CO2 purity above 99.5% had no effect. Oxidative stability of the SC-CO2 oil extracted under these conditions was only slightly lower than that of the oil extracted with petroleum ether.  相似文献   

6.
The essence oil of the Alpinia oxyphylla seed has been used as a vasodilatatory and analgesic agent in pharmacology. The extraction of the essence oil in supercritical carbon dioxide (SC-CO2) from Alpinia oxyphylla seeds was investigated. Small particles were obtained after breaking open, sieving, and drying from the Alpinia oxyphylla seeds. The small particles were placed in a 5-L extraction tank in a temperature-controlled system. The CO2 flow rate of the system was set at 1 L/min in this study. Response surface methodology with a three-factor and three-level Box-Behnken experimental design was used to evaluate the effects of the reaction parameters such as extraction time (1, 2, 3 h), temperature (45, 55, 65 °C), and pressure (20, 30, 40 MPa), on the extraction yield of the essence oil from Alpinia oxyphylla seeds. The results indicate that the extraction pressure was the most important parameter affecting the yield of the essence oil. A model for the estimation of the yield was developed. Based on the analysis of ridge max, the optimal extraction conditions were established as an extraction time of 2.8 h, a temperature of 67.5 °C, and a pressure of 28.5 MPa, with an expected yield of 2.78%. Extraction of Alpinia oxyphylla essence oil in SC-CO2 under these optimal conditions was conducted, and a yield of 2.77 ± 0.19% was obtained.  相似文献   

7.
Krill oil including astaxanthin was extracted using supercritical CO2 and hexane. The effects of different parameters such as pressure (15 to 25MPa), temperature (35 to 45 °C), and extraction time, were investigated. The flow rate of CO2 (22 gmin−1) was constant for the entire extraction period of 2.5 h. The maximum oil yield was found at higher extraction temperature and pressure. The oil obtained by SC-CO2 extraction contained a high percentage of polyunsaturated fatty acids, especially EPA and DHA. The acidity and peroxide value of krill oil obtained by SC-CO2 extraction were lower than that of the oil obtained by hexane. The SC-CO2 extracted oil showed more stability than the oil obtained by hexane extraction. The amount of astaxanthin in krill oil was determined by HPLC and compared at different extraction conditions. The maximum yield of astaxanthin was found in krill oil extracted at 25 MPa and 45 °C.  相似文献   

8.
Supercritical carbon dioxide (SC-CO2) and soxhlet extraction using was carried out to extract oil from wheat bran oil. For SC-CO2, the pressure and temperature were ranging from 10 to 30 MPa and 313.15–333.15 K. The extraction was performed in a semi batch process with a CO2 flow rate of 26.81 g/min for 2 h. Wheat bran oil was characterized to investigate the quality. Acid value (AV) and peroxide value (POV) were higher in hexane extracted oil compared to SC-CO2 extracted oil. Induction period was measured by rancimat test. The oil obtained by SC-CO2 extraction had higher capability to delay the oxidation by surrounding environment. The DPPH radical scavenging activity was also measured. The SC-CO2 extracted oil showed higher radical scavenging activity compared to hexane extracted oil.  相似文献   

9.
Rosehip seed oil has been extracted using supercritical CO2 at various operating conditions to optimize extraction process. The effect of extraction conditions on the fatty acids composition in the oil was also observed. The extraction conditions were as follows: pressures (P) of 150, 300 and 450 bar, temperatures (T) of 40, 60 and 80 oC, and CO2 flow rate (F) of 2, 3 and 4 mL/min. A full 33 factorial design coupled with statistical and graphical analysis of the results, by using analysis of variance (ANOVA) was applied to optimize variables in the process of rosehip seed oil extraction with SC-CO2. The experimental result showed that the seed oil extracted mainly contained linoleic acid (C18:2) as the most abundant followed by linolenic (C18:3), palmitic (C16:0) and stearic acid (C18:0); and the extraction conditions influenced the fatty acids composition. The analysis of experimental design for process optimization results demonstrates that temperature and pressure were to be the influential variables on the extraction yield of seed oil. Furthermore, the apparent solubility of oil in SC-CO2 was also determined from the experimental data and correlated using empirical equations for further model developing.  相似文献   

10.
The objective of this study was to investigate and compare fatty acids, tocopherols and sterols of kenaf seed oil extracted by supercritical carbon dioxide and traditional solvent methods. Fatty acids, tocopherols and sterols were determined in the extracted oils as functions of the pressure (400 bar, 600 bar), temperature (40 °C, 80 °C) and CO2 flow rate (25 g/min) using a 1-L extraction vessel. Gas chromatography was used to characterize fatty acids and sterols of the obtained oils while tocopherols were quantified by HPLC. No differences were found in the fatty acid compositions of the various oil extracts and the main components were found to be linoleic (38%), oleic (35%), palmitic (20%) and stearic acid (3%). Extraction of tocopherols using high pressure (600 bar/40 °C, 600 bar/80 °C) gave higher total tocopherols (88.20 and 85.57 mg/100 g oil, respectively) when compared with hexane extraction which gave yield of 62.38 mg/100 g oil. Extraction of kenaf seed oil using supercritical fluid extraction at high temperature (80 °C) gave higher amounts of sterols when compared with hexane extraction.  相似文献   

11.
Laurus nobilis L., commonly known as daphne tree, is an evergreen that belongs to the Lauraceae family. Daphne trees produce grape-sized shiny purplish berries having three parts: flesh, skin, and an inner kernel (single seed). This study examines supercritical CO2 (SC-CO2) extraction of oil from daphne seeds. The oil yield of ground seeds varied from 14 to 28% depending on the method and particle size used for oil recovery. Yields were similar for both petroleum ether and SC-CO2 extraction. The extraction yield decreased significantly with increasing particle size. The amount of extract collected increased exponentially with increasing SC-CO2 pressure. The highest extraction yield was obtained at the highest temperature studied, 75°C. More than 45% of the oil was lauric acid. SC-CO2 is a viable technique to obtain high-purity L. nobilis L. seed oil, which is a potential ingredient for the cosmetic industry.  相似文献   

12.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   

13.
The seed oil of Microula sikkimensis had been intensively studied due to its pharmacological actions. In the present study, seed oil of Microula sikkimensis was extracted using supercritical fluid extraction (SFE). Determinations of the extracts composition were performed by gas chromatography (GC). An orthogonal array design (OAD), OA9 (34), was employed for optimization of the supercritical fluid extraction of the compound with regard to the various parameters. Four factors, namely pressure (21.0–27.0 MPa), the dynamic extraction time, temperature, and CO2 flow rate of the supercritical fluid, were studied and optimized by a three-level OAD. The effects of the parameters on the yield of seed oil were studied using analysis of variance (ANOVA). The results revealed that the pressure had a significant effect on the yield of seed oil (p < 0.05), while the other three factors, i.e., CO2 flow rate, dynamic extraction time and temperature, were not identified as significant factors under the selected conditions based on ANOVA. The results show that the best values for the extraction condition of seed oil was pressure 24.0 MPa, extraction time 3 h, temperature 45 °C and a CO2 flow rate 20 L/h in the 20-L vessel.  相似文献   

14.
This paper describes the extraction of borage seed oil by supercritical carbon dioxide (SC-CO2) and the further extraction of antioxidants from the SC-CO2-defatted borage meal with organic solvents (water, methanol, ethanol and ethyl acetate). The optimal conditions for oil extraction were obtained at 303 and 323 K at 200 bar, 2.5 h and a continuous flow of CO2 of 1.5 L/h introduced through the bottom when the operating pressure and temperature were reached, attaining a yield of 60%. Borage oil is rich in unsaturated fatty acids; oleic acid, linoleic acid and linolenic acid accounted for 74% of the total fatty acid content under the above conditions. The highest extraction yield was achieved using water or methanol as extracting solvent from the SC-CO2-defatted borage meal at 303 K and pressures of 200 and 150 bar for water and methanol, respectively. The most potent extracts, according to all methods tested, were obtained with water and methanol.  相似文献   

15.
Supercritical CO2 extraction of flaxseed   总被引:2,自引:0,他引:2  
Extraction of flaxseed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the solubility of oil and oil yield, three isobaric (21, 35, and 55 MPa) and two isothermal (50 and 70°C) extraction conditions were selected. Although the maximal solubility of flaxseed oil, 11.3 mg oil/g CO2, was obtained at 70°C/55 MPa, the oil yield obtained after 3 h of extraction at this condition was only 25% (g oil/g seed×100), which represented 66% of the total available oil of the flaxseed. Lipid composition and FFA and tocol (tocopherol and tocotrienol) contents of the oils obtained by both SC-CO2 and petroleum ether extraction were determined. The α-linolenic acid content of the SC-CO2-extracted oil was higher than that obtained by solvent extraction.  相似文献   

16.
Supercritical carbon dioxide (SC-CO2) extraction of lipid from Scenedesmus sp. for biodiesel production was investigated and compared to conventional extraction methods. The effect of biomass pre-treatment prior to extraction and extracting conditions, namely pressure in the range of 200–500 bar, temperatures in the range of 35–65 °C and CO2 flow rate in the range of 1.38–4.02 g min−1, on SC-CO2 extraction yield and quality of lipid were investigated. Three levels full factorial design of experiments and response surface methodology was used to model the system. A second order polynomial model was developed and used to predict the optimum conditions. Scaling up to a laboratory larger scale was also tested. The results indicated that SC-CO2 extraction was superior to other extraction techniques, but exhibited significant variations in yield with changes in operating parameters. In the developed model, it was found that the linear and quadratic terms of the temperature, as well as the interaction with pressure had a significant effect on lipid yield; whereas, their effect on lipid quality was insignificant. The best operating conditions, in the tested range, were 53 °C, 500 bar and 1.9 g min−1, in which lipid extraction yield of 7.41% (dry weight basis) was obtained. Negligible differences were observed when the fatty acid composition of SC-CO2 extracted lipid was compared to that extracted by the conventional methods. At the optimum conditions, SC-CO2 extraction was successfully scaled-up by eight-folds and the extracted lipid yield dropped by 16%.  相似文献   

17.
Supercritical fluid extraction (SFE) of sorghum bug oil (SBO) with carbon dioxide was performed and compared with Soxhlet extraction using hexane. Response surface methodology (RSM) was used to determine the effects of pressure (200–400 bar) and temperature (50–70 °C) on the sorghum bug oil yield in SC-CO2. The high extraction yield (more than 45.0%) was obtained at 300 bar and 60 °C followed by 400 bar and 70 °C, while the lower yield was obtained at 159 bar and 60 °C. At low pressure levels (159 and 200 bar), the oil yield decreased due to the reduced density of CO2 at higher temperatures. Gas chromatography was used to characterize the fatty acids of the oils obtained while α-tocopherol was quantified by HPLC. No differences were found in the fatty acid compositions of the various extracts, while the α-tocopherol extracted from sorghum bug oil by the conventional solvent method was less than that extracted by the SFE process using CO2. It can be observed that the conventional solvent extraction method exhibited notable DPPH radical-scavenging activity, with an efficacy slightly lower (IC50 7.45 ± 0.3) than that of the SFE extracts.  相似文献   

18.
Supercritical CO2 (SC-CO2) extraction was applied to remove lipid and cholesterol from freeze-dried goat placenta. A response surface methodology (RSM) was employed to optimize the extraction parameters. The effects of pressure, temperature, flow rate of CO2 and extraction time on the yields of lipid and cholesterol were investigated. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. The independent variables, quadratics of pressure and extraction time, and the interaction between pressure and temperature had significant effects on the yields of lipid and cholesterol, respectively. The optimum parameters within the experimental range of the variables were 34.6 MPa, 35.3 °C, 29.1 min with a CO2 flow rate of 18.2 L/h. Under such condition, the yields of lipid and cholesterol were predicted to be 21.02% and 8.46 mg/g, respectively. Furthermore, the removal efficiency of cholesterol by SC-CO2 was higher than those achieved by Soxhlet and Folch extraction methods.  相似文献   

19.
20.
In this study, Camellia oil is co-extracted from Camellia oleifera seeds and green tea scraps by supercritical carbon dioxide (SC-CO2), which is optimized on the extraction yield, ABTS-scavenging activity, and total polyphenols content (TPC) of oil by single-factor experiments combined with response surface methodology (RSM). The extraction temperature, pressure, dynamic time, carbon dioxide (CO2) flow rate, and seed mass ratio were investigated with single-factor experiments. The results indicated the optimum CO2 flow rate and dynamic extraction time were 15 L hour−1 and 60 min (i.e., 2.382 kg CO2/100 g sample). Furthermore, the complicated effects of extraction temperature (40–50 °C), pressure (20–30 MPa), and seed mass ratio (0.25–0.75) were optimized by RSM based on the Box–Behnken design (BBD). The models with high R-squared values were obtained and used to predict the optimum operating conditions of the process. Under the optimum operating conditions (i.e., temperature of 46 °C, pressure of 30 MPa, and seed mass ratio of 0.35), the extraction yield, ABTS-scavenging activity, and TPC of oil were 14.43 ± 0.17 g/100 g sample, 73.70 ± 0.34%, and 2.18 ± 0.05 mg GAE/g oil, which were in good agreement with the predicted values. In addition, the experiments indicated that the Camellia oil obtained was rich in polyphenols, resulting in better oxidation stability and antioxidant activity than the original oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号