首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用60%和80%孔隙度Ni-Cu合金泡沫强化/In-Sn复合钎料于160℃对镀银铝合金板进行低温钎焊连接,文中研究了钎焊时间对钎焊接头显微结构及力学性能的影响。结果表明,随着钎焊时间的延长,界面处的Ag2In逐渐增厚,钎缝中(Cu, Ni)6(Sn, In)5和(Cu, Ni)6Sn5反应物逐渐增多。80%和60%孔隙度强化的复合钎料钎焊接头的抗剪强度均随钎焊时间的延长而提高,在120 min时,钎焊接头的抗剪强度达到最高值,分别为18.4 MPa和31.5 MPa,相较于纯In-Sn共晶钎焊接头强度(6.81 MPa)分别提升了2.7倍和4.6倍。  相似文献   

2.
《电焊机》2019,(12)
采用Cu作为中间层对银与07Cr16Ni6高强不锈钢进行接触反应钎焊,测试分析钎焊接头的性能和组织。结果表明,随着中间层厚度的增加,Cu向银基体的扩散深度增加,钎焊接头强度先增大后减小。中间层厚度为20~30μm时,银与高强不锈钢实现了可靠连接,钎角饱满,钎缝内部致密,接头抗剪强度达到131 MPa。  相似文献   

3.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

4.
以20μm厚的纯Cu片作为中间层,采用20μm厚的非晶态Ni基钎料箔在在900、930、950℃下保温10min真空钎焊W和CuCrZr合金。采用SEM和EDS分析了钎焊接头的界面形貌,检测钎焊接头的剪切强度及显微硬度。结果表明,中间层Cu与母材CuCrZr合金一侧界面结合良好,在CuCrZr合金一侧形成了钎焊热影响区;钎料与W母材界面处形成了反应层,在W母材侧有微裂纹。随着钎焊温度的升高,W侧裂纹增多,造成接头性能的迅速恶化。W和CuCrZr的钎焊温度最好控制在930℃以下。以纯Cu片为中间层,采用Ni基钎料钎焊W和CuCrZr的过程,实质上是Ni与Cu、W互相扩散并反应生成化合物层和固溶体的过程。钎焊接头的最佳剪切强度为144MPa,断裂主要发生在W母材及W与反应层之间的界面。钎缝区域的显微硬度随钎焊温度的升高而降低,CuCrZr合金焊接热影响区的硬度高于其母材。  相似文献   

5.
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。  相似文献   

6.
采用Ag-Cu钎料真空钎焊FeCrMo/MnCu阻尼合金,并对钎焊接头微观组织、力学性能以及钎焊试样的阻尼性能进行研究。结果表明,Ag-Cu钎料可以实现两种阻尼合金的连接,并且钎焊试样经过435℃保温4 h的调幅热处理后,能够复合两种阻尼合金的阻尼特性,随着应变的增加,钎焊试样的阻尼性能稳定提高。钎缝组织主要为Mn-Ni-Cu-Fe-Ag固溶体以及富Ag相组成,钎料与母材之间能产生良好的冶金结合,钎焊接头组织致密;钎焊接头的断裂模式为以韧性断裂为主的混合型断裂,钎焊接头室温剪切强度为209.7 MPa,经过调幅热处理后,钎焊接头断裂方式为脆性断裂,钎焊接头室温剪切强度达到246.4 MPa。  相似文献   

7.
对冷压烧结结合热挤压工艺制备的SiC/Cu复合材料,选用Ti和AgCuTi为钎料,采用不同的工艺进行真空钎焊试验.用金相显微镜和扫描电镜对母材和钎焊接头的剪切断口形貌进行分析,利用电子万能试验机对钎焊接头进行抗剪强度测试,将接头抗剪强度与母材抗剪强度进行对比以评判钎缝质量.结果表明,用Ti为钎料连接SiCp/Cu复合材料的连接状况要优于AgCuTi钎料,且连接温度850℃,保温时间为20 min时,抗剪强度最大为70.5 MPa,与母材抗剪强度相当;随着铜基复合材料中SiCp含量不断增加,钎焊接头室温抗剪强度不断下降,当SiCp含量超过10%时,抗剪强度快速下降.  相似文献   

8.
借助于SEM、EDS、XRD等检测手段对Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头进行观察分析,研究了钎焊工艺参数及热冲击条件对Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu钎焊接头界面金属间化合物和力学性能的影响。结果表明:添加0.05%(质量分数)Ni能细化Sn2.5Ag0.7Cu0.1RE钎料合金的初生β-Sn相和共晶组织;钎焊温度270℃和钎焊时间240 s时,钎焊接头抗剪切强度最大达26.9 MPa,较未添加Ni的钎焊接头提高8.9%;随着热冲击周期的增加,钎焊接头界面金属间化合物层平均厚度增加,界面粗糙度先增大后减小,钎焊接头强度降低;添加0.05%Ni能够抑制接头界面金属间化合物的成长、钎焊接头强度的降低,有利于改善接头可靠性。  相似文献   

9.
采用Ag-Cu-Ti活性钎料连接Al2O3陶瓷与1Cr18Ni9Ti不锈钢,研究了Cu,Ni和表面镀Ni的Cu 3种中间层金属对钎焊接头组织和剪切强度的影响.结果表明,Cu作为中间层时,陶瓷与钎料能形成良好的界面反应;Ni作为中间层时,焊缝中形成大量的Ni3Ti金属间化合物,导致陶瓷/钎料不能形成良好的反应层,降低了接头的剪切强度;表面镀Ni的Cu片作为中间层金属时,少量Ni的存在不影响钎料中活性元素Ti的含量,钎料与陶瓷能形成良好的界面反应,同时Ni层的存在降低了钎料对Cu的溶蚀作用,该种中间层更能有效地缓解钎焊接头的残余应力.当Ni层的厚度为30 mm,Cu片的厚度为0.2 mm时,接头剪切强度可达到109 MPa.  相似文献   

10.
采用Al70Si7.5Cu20Zn2.5和Al65Si10Cu20Zn5两种急冷钎料钎焊L2纯铝和6063铝合金,研究钎焊接头的界面微观结构和力学性能.结果表明,急冷钎料钎焊接头由母材、界面区和钎缝中心组成.界面区为αAl固溶体,钎缝中心组织为αAl固溶体 θ(Al2Cu)相 Si相.采用Al65Si10Cu20Zn5急冷钎料钎焊的接头抗剪强度均高于Al70Si-7.5Cu20Zn2.5急冷钎料钎焊的接头强度;匹配氯化物钎剂钎焊的接头强度均高于氟化物钎剂.在相同的工艺条件下,采用急冷钎料钎焊的L2纯铝接头,其抗剪强度都明显高于相应的常规钎料,其增加值在40%左右.  相似文献   

11.
《电焊机》2015,(12)
对比研究了两种缓冲层添加方式对钢/银基钎料钎焊接头组织和强度的影响。结果表明,采用复合钎料,缓冲层与钎料界面结合较好,界面洁净;预置缓冲层试样缓冲层Cu与钎料结合稍差。复合钎料钎焊接头抗剪强度高于预置缓冲层钎焊接头抗剪强度。  相似文献   

12.
采用Ag-Cu-In-Ti钎料连接Si_3N_4陶瓷和3D打印316L不锈钢,研究了Si_3N_4陶瓷/Ag-Cu-In-Ti/Cu/Ag-Cu-In-Ti/316L不锈钢接头界面组织结构。随着钎焊温度的升高,钎焊中间层Cu箔不断被消耗,陶瓷侧和316L不锈钢侧的反应层厚度增加,钎料扩散加剧,钎焊接头的室温4点抗弯强度先增加后降低;随着钎焊中间层Cu箔厚度从0增加到200μm,钎焊接头连接更为紧密,接头处的裂纹消失,钎焊接头4点抗弯强度显著提升。随着钎焊保温时间的增加,钎焊接头4点抗弯强度先提高后降低,最优的钎焊工艺参数为加热温度800℃,保温时间10 min,中间层Cu箔的厚度为200μm。  相似文献   

13.
稀土La改性Ag-Cu-Ti钎料的显微组织和力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
系统研究了钎焊CBN工具用稀土元素La改性Ag-Cu-Ti钎料合金的熔化温度、微观组织、显微硬度及钎料与45钢基体钎焊接头抗剪强度.结果表明,稀土元素La对Ag-Cu-Ti钎料合金的熔点影响很小,但是可以促进钎料的合金化,提高其合金化程度,稀土La加入量不超过0.5%(质量分数)时可以改善Ag-Cu-Ti钎料合金的微观组织,使金属间化合物分布更加均匀,提高Ag-Cu-Ti钎料合金的显微硬度,还可以明显改善钎料与45钢基体的钎焊接头抗剪强度.  相似文献   

14.
在BNi-7钎料中添加合金元素Cu用于焊接316L不锈钢,在钎焊温度为980℃、保温时间为10 min、钎焊间隙为100μm的条件下,研究了钎焊接头的微观结构、剪切强度以及端口形貌随不同Cu添加量的变化规律。结果显示,接头主要由不锈钢/钎料界面的Ni(Fe,Cr,Cu)固溶体和钎缝中心大花纹状的Ni(Fe,Cr,Cu)-CrNiP共晶组织和细点状的Ni3P-Ni(Fe,Cr,Cu)共晶组织组成。随着Cu添加量增加,钎缝中心的大花纹状的Ni(Fe,Cr,Cu)-CrNiP共晶组织增加,韧性相Ni(Fe,Cr,Cu)数量增加。接头的抗剪强度随着Cu添加量的增加而增加。当铜添加量为9%时,接头的抗剪强度最大为118 MPa。和不添加合金元素Cu比较,添加Cu元素的接头断口上有较多的撕裂棱,接头的韧性更好。  相似文献   

15.
在基体钎料Ti-20Ni上添加不同含量Cu形成Ti Ni Cu三元合金,利用X射线衍射分析仪、JSM-5610LV扫描电镜及能谱分析以及AG-1250KN万能试验机研究测定Cu含量对Ti-20Ni微观组织及钎焊接头抗剪强度的影响。结果表明:在基体钎料Ti-20Ni上添加Cu可以细化组织,显著提高Ti-20Ni抗剪强度。Ti20Ni10Cu的抗剪强度较Ti20Ni5Cu提高了23.7%,其抗剪强度达到218.55 MPa。  相似文献   

16.
以泡沫Cu作为应力缓冲中间层,采用Ag-Cu-Ti合金作为钎料,采用不同的温度真空钎焊C/C复合材料和TC17钛合金。通过剪切试验测试不同钎焊温度下接头的力学性能,并采用SEM、EDS和XRD分析钎焊接头的微观组织。研究表明:当钎焊温度为860℃时,钎焊接头获得最大的剪切强度24 MPa。钎焊后,中间层与母材连接紧密,无界面缺陷。在TC17钛合金侧,Ti元素和Cu元素发生界面反应,依次形成CuTi_2、CuTi的反应层;在中间层,Cu和Ti相互结合形成Cu4Ti_3金属化合物,还有Ag(s,s)和Cu(s,s)相;在C/C复合材料一侧,Ti和C发生界面反应形成Ti C化合物,改善了钎料对C/C复合材料表面的润湿性能,增强了钎焊接头的连接效果。  相似文献   

17.
采用扫描电镜(SEM)、能谱仪(EDS)和万能力学试验机等研究了500℃退火不同时间对AgCuZnNiMn/Cu/AgCuZnNiMn多层复合钎料界面元素扩散行为与钎焊力学性能的影响。结果表明:复合钎料界面扩散层主要为银基固溶体、铜基固溶体;随退火时间的增加,物相发生明显粗化,界面两侧元素不断发生互扩散,当退火时间为24 h时,界面扩散层厚度达20μm。同时,随退火时间的增加,钎焊接头界面处的应力缓释Cu层逐渐减少直至消失,接头强度从224 MPa下降到165 MPa,接头断裂机制从以韧窝为主的韧性断裂向韧-脆混合性断裂转变。表明退火时间对多层复合钎料中间层宽度设定有重要影响,而中间层的相对宽度也影响钎料的使用性能。  相似文献   

18.
《焊接》2015,(5)
用一种MgAlSn镁合金钎料对变形镁合金AZ61执行了高频感应钎焊,研究了MgAlSn钎料的显微组织、钎焊接头的显微组织及力学性能。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱分析仪(EDS)等分析了钎料的显微组织和钎焊接头的界面显微组织及钎缝物相,测试了钎焊接头的强度。结果表明:在钎焊过程中钎料与镁合金母材发生界面冶金反应,在钎缝中钎料的原始显微组织形貌消失,由于合金化作用在钎缝中形成新的钎缝显微组织并形成新相α-Mg。钎焊对接接头的平均抗拉强度为45 MPa,搭接接头的平均抗剪强度为36 MPa。接头断口的主要断裂形式为沿晶脆性断裂,断裂位置主要产生于硬脆α-Mg+β-Mg_(17)Al_(12)处。  相似文献   

19.
研究开发了Al_2O_3陶瓷与Kovar合金直接钎焊用Cu-Sn-Ti-Ni活性粉末钎料。在真空下采用该钎料钎焊Al_2O_3和Kovar合金,并对接头的微观组织、抗剪强度及断口进行了分析。结果表明,Al_2O_3/钎料界面上生成了厚度约为1μm的反应层,该反应层主要由Cu_3TiO_4和AlTi组成;钎料层主要由Cu(s,s)、NiTi和TiFe_2等组成。Al_2O_3与Kovar在920℃真空条件下焊接性能良好,抗剪强度102.86 MPa,且断裂主要发生在Al_2O_3陶瓷与钎料结合的界面上。  相似文献   

20.
金刚石与硬质合金钎焊接头应力场分析   总被引:7,自引:4,他引:7       下载免费PDF全文
采用ANSYS有限元数值模拟软件,运用瞬态非线性分析的方法,模拟出以Ag—Cu—Ti为钎料的金刚石与硬质合金钎焊接头的焊后应力场,并预报出钎缝厚度对钎焊接头应力大小和分布的影响,从而分别得出焊后金刚石层、钎料层与硬质合金区域的应力场分布,通过对应力场彩云图以及数据组的综合分析,找到焊后应力集中的危险区域;在数控真空钎焊炉中进行钎焊试验,由于施加压力的不同,得出钎缝厚度不同的焊接试件。而后进行抗剪强度试验,得出了钎料层厚度并不是越厚越好,而是存在一个最佳值的规律,计算所得规律与试验结果基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号