首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Increasing the bandwidth without degrading the noise performance represents the main challenge in the design of transimpedance amplifiers. This paper presents a novel circuit topology for a transimpedance amplifier that allows obtaining an improved tradeoff between equivalent input noise and bandwidth with respect to the conventional approach. The effectiveness of the new topology has been demonstrated by designing and testing a prototype of a transimpedance amplifier based on the proposed topology.  相似文献   

2.
A monolithic active pixel sensor operating in current mode for charged particle detection is described. The sensing element in each pixel is an n-well/p-sub diode with a PMOS transistor integrated in an n-well. The drop of the n-well potential from the collection of charge modulates the transistor channel current. Each pixel features two current mode memory cells. The subtraction of distant-in-time samples frees the signal of fixed pattern noise (FPN) and of the correlated low-frequency temporal noise components, resulting in extraction of the particle footprint. The subtraction circuits are placed at each column end. A transimpedance amplifier, integrating in sequence two current samples and subtracting the results in an arithmetic operation, was adopted. The integrated version of the transimpedance amplifier, designed with a maximized conversion gain, is burdened by a risk of an early saturation, imperiling its operation, if the dispersions of the dc current component are too big. The degree of dispersions could not be estimated during the design. Some number of columns is available as a backup with the direct current readout. An external realization of the subtracting circuit, based on the same principle, is used to process direct output columns. The concept of the data acquisition setup developed, the tested performance of an array of cells, and the processing circuitry are described  相似文献   

3.
Tsujino K  Akiba M  Sasaki M 《Applied optics》2007,46(7):1009-1014
The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.  相似文献   

4.
A small, sensitive, low noise, high gain power amplifier, using the anisotropic magnetoresistance effect in thin film permalloy, has been designed and its characteristics calculated. The minimum detectable input current is determined by Johnson noise and hence by input resistance and desired bandwidth. An example of theoretical performance is as follows. For an amplifier unit with approximate dimensions of300 times 300 times 2 mum and with input and load resistances of 50 Ω each the calculated noise at room temperature is equivalent to 10-8A for a bandwidth (BW) of 1MHz or to 10-7A for a BW of 100 MHz. At the 10-8A input current level, the calculated power gain issim 600,000corresponding to a current gain of 775. Power gain decreases with input current asI^{-4/3}, reaching unity atI = 2.1 times 10^{-4}A. Hence, for a BW of 1 MHz, at room temperature, the input current operating range for both amplification and signal-to-noise ratio greater than one is fromI=10^{-8}A to2.1 times 10^{-4}A. To achieve high gain, the amplifier is configured so that the magnetization of the permalloy is biased to lie nominally along the hard axis, the sensing current in the permalloy makes an angle of 45° with the nominal magnetization direction, and the input current produces a magnetic field along the easy axis. This microsize, low noise, silicon compatible power amplifier will be useful in digital and FM applications and possibly as an amplifier for crosstie and bubble memories.  相似文献   

5.
给出了一种利用TSMC 0.18μm CMOS工艺实现的2.5 Gb/s跨阻前置放大器.此跨阻放大器的增益为66.3 dBΩ,3 dB带宽为2.18 GHz,等效输入电流噪声为112.54 nA.在标准的1.8 V电源电压下,功耗为7.74 mW.输入光功率为-10 dBm时,PCML单端输出信号电压摆幅为165 mVp-p.模拟结果表明该电路可以工作在2.5 Gb/s速率上.  相似文献   

6.
In this paper we discuss guidelines for designing linear bipolar junction transistor amplifiers with low 1/f amplitude modulation (AM) and phase modulation (PM) noise. These guidelines are derived from a new theory that relates AM and PM noise to transconductance fluctuations, junction capacitance fluctuations, and circuit architecture. We analyze the noise equations of each process for a common emitter (CE) amplifier and use the results to suggest amplifier designs that minimize the 1/f noise while providing other required attributes such as high gain. Although we use a CE amplifier as an example, the procedure applies to other configurations as well. Experimental noise results for several amplifier configurations are presented.  相似文献   

7.
In this paper we describe a technique to predict the 1/f phase modulation (PM) and 1/f amplitude modulation (AM) noise due to up-conversion of 1/f baseband current noise in microwave heterojunction bipolar transistor (HBT) amplifiers. We obtain an accurate model for the amplifier and find the expression for voltage gain in terms of DC bias, transistor parameters, and circuit components. Theoretical 1/f PM and AM noise sensitivities to 1/f baseband current noise are then found by applying the definitions of PM and AM noise to the gain expression of the amplifier. Measurements of PM and AM sensitivities at 500 MHz and 1 GHz were in good agreement with the values predicted by theory, verifying the validity of this technique. This method can be used to optimize amplifier design for low PM and AM noise. We show that the amplifier PM noise can be reduced by 9 dB by adjusting the value of the input coupling capacitor.  相似文献   

8.
Design of high-performance photodiode receivers for optical tomography   总被引:1,自引:0,他引:1  
The design of instrumentation hardware for tomographic systems must take careful account of measurement noise. This is especially true in near-infrared absorption tomography, where the signal of interest is typically only a few percent of the total signal at the detector, and the available optical power may have to be shared among many measurement channels. In this paper, the monitoring of photodiodes in near-IR absorption tomography is examined in detail, but much of the material is applicable at wavelengths ranging from the UV to beyond 2.5 /spl mu/m. The authors' application involves the frequency region 50 kHz to 2 MHz, which lies above that utilized in the majority of radiometric sensing systems, yet substantially below telecoms bit rates. The problem is further distinguished by the use of phase-sensitive detection schemes, which make local noise density more relevant than wideband noise performance and relax the requirement for dc precision. Alternative transimpedance circuit configurations, including both single-ended and differential topologies, are analyzed with a view to optimization of the signal-to-noise ratio. Typical values of photodiode capacitance and shunt resistance are shown to result in significant noise gain, greatly increasing the importance of amplifier voltage noise relative to other intrinsic noise sources. It is shown that for applications of this type, viable alternatives to the traditionally dominant FET amplifier do exist. The relative susceptibility to coupled interference is also considered. The results of practical tests, involving class-leading operational amplifiers, are presented to support the analyses. These results also underline the need for careful circuit layout and shielding if the capabilities of these devices are to be fully exploited.  相似文献   

9.
This paper presents a new RF built-in self-test (BIST) measurement and a new automatic-performance-compensation network for a system-on-chip (SoC) transceiver. We built a 5-GHz low noise amplifier (LNA) with an on-chip BIST circuit using 0.18-/spl mu/m SiGe technology. The BIST-measurement circuit contains a test amplifier and RF peak detectors. The complete measurement setup contains an LNA with a BIST circuit, an external RF source, RF relays, 50-/spl Omega/ load impedance, and a dc voltmeter. The proposed BIST circuit measures input impedance, gain, noise figure, input return loss, and output signal-to-noise ratio of the LNA. The test technique utilizes the output dc-voltage measurements, and these measured values are translated to the LNA specifications such as the gain through the developed equations. The performance of the LNA was improved by using the new automatic compensation network (ACN) that adjusts the performance of the LNA with the processor in the SoC transceiver.  相似文献   

10.
孙颖  李醒飞  张国雄 《声学技术》2003,22(4):243-245
医用超声仪器发出的超声波在人体内的传播过程中,能量被人体组织吸收,随着探测深度的增加,超声波能量逐渐衰减,回波信号的动态范围很大,因此要进行声程补偿。文章简要介绍了超声诊断仪器的深度时间增益补偿电路(TGC)的基本原理,即用一定的电压曲线来控制放大器的增益,使不同深度下的超声回波获得不同的放大倍数。文中还提出了一种采用新型电子元器件的数字控制解决方案,能有效减小送入A/D转换器的信号的动态范围。该方案采用新型的高精度、低噪声、增益可变放大器AD604,电路简单,控制信号稳定可靠,能准确地补偿超声波在人体内的衰减,并为控制系统实现高速数字化提供了一个方法。  相似文献   

11.
12.
In this study, a 60 GHz variable gain low noise amplifier with more than 20 dB gain is presented. An efficient design methodology employing scalable transmission lines is applied, which can avoid iterative EM simulations and predict the circuit behaviour very accurately. Different transmission line modelling approaches are compared to each other, and a simple yet flexible model is eventually chosen. The circuit has been fabricated and measured on-wafer. The power consumption of only 7.3 mW is, to the knowledge of the authors, the lowest value reported for a V-band amplifier.  相似文献   

13.
The problem of measuring very low levels of current noise in bipoles (linear or not) is dealt with, and a measurement technique is proposed. This technique allows the measurement of noise power spectra 6-10 dB lower than the equivalent input power spectrum of the amplified necessary to perform the measurement. An improvement of 16-20 dB in the sensitivity is obtained with respect to the one of conventional methods, which, for an acceptable accuracy, require the noise of the bipole under test to be 10 dB larger than the equivalent input one of the amplifier. The present method is based on the accurate measurement of the amplifier transimpedance with respect to the input current noise sources and on the precise evaluation and subtraction of the contribution from all the spurious sources to the total noise. The whole procedure is implemented by means of a dual-channel signal analyzer and almost completely automated. The technique has been tested by using it to measure the power spectra of the noise given by known generators, of the Nyquist noise produced by bipoles made up of resistors and capacitors, and of shot noise in p-n junctions. The experimental results agree very well with theoretical predictions  相似文献   

14.
We have been developing cryogenic readout integrate circuits (ROICs) for high impedance submillimeter and far-infrared detectors: Our ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. We designed ROICs consisting of analog readouts and digital circuits for 32-element SIS photon detectors fabricated in RIKEN. The analog readout is ac-coupled capacitive transimpedance amplifier (CTIA), which is composed of the two-stage amplifier. Some initial test results of the ac-coupled CTIA gave us the following performance; open loop gain of >740, power consumption ≈1.4 μW. The input referred noise is ≈4 μV/ at 1 Hz. These results suggest that low power and high sensitive cryogenic readout electronics are successfully developed for high impedance detectors.  相似文献   

15.
Using numerical simulations, we analyze the properties of two-stage discrete fiber Raman amplifiers without and with all-optical gain clamping. In both cases a two-stage amplifier can be designed to have the same gain characteristics as a single-stage amplifier with improved noise performance by use of either the same total length of gain fiber (but with increased pump power) or total pump power (but with increased total length of gain fiber).  相似文献   

16.
Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 μm to 20 μm. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ω shunt resistance photodiode with a maximum signal gain of 108 V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for the output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed.  相似文献   

17.
A new topology for the implementation of a very low offset voltage preamplifier is presented. The new topology employs a time-varying resistance as a probe for detecting the sign and magnitude of the equivalent input offset of an operational amplifier in a series-shunt feedback configuration and allows for continuously correcting the offset voltage by means of a proper control feedback. The most remarkable feature of the approach we propose is the fact that the offset correction can continuously be performed with the signal voltage source connected to the circuit, as its presence and magnitude do not affect the offset detection circuit. At the same time, the offset cancellation circuit has minimum effect on the output voltage of the preamplifier in the bandwidth of the signal. An actual low-offset preamplifier based on the new approach we propose has been built and tested. While employing a metal–oxide–semiconductor field-effect transistor (MOSFET) input operational amplifier with a typical input offset of 100 $muhbox{V}$ (600- $muhbox{V}$ maximum), a voltage preamplifier with a gain of 201 and an equivalent input offset voltage below 100 nV is consistently obtained, which is independent, by design, of the temperature. While characterized by these excellent performances, the system employs quite standard low-cost components and does not require any calibration procedure.   相似文献   

18.
The noise of photodetectors based on mid-IR A3B5 photodiodes (PhDs) implemented in a transimpedance amplifier scheme is analyzed. Recommendations concerning the choice of amplifier elements depending on the dynamic resistance of PhDs are given. It is shown that, using modern low-noise amplifiers, it is possible to reach a potential limiting threshold sensitivity of photodetectors only using PhDs with dynamic resistances above 50 Ω.  相似文献   

19.
This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.  相似文献   

20.
蒋衍  刘汝卿  朱精果  王宇 《光电工程》2019,46(7):190194-1-190194-8
本文设计了一种应用于脉冲飞行时间(TOF)成像激光雷达探测系统的高带宽、低噪声全差分放大器(FDMA)。该芯片采用多级级联结构和有源电感技术,增大电路带宽和减少芯片面积,并且通过使用失调隔离技术,增强了各增益级对工艺偏差的鲁棒性。在输出级电路中,为使全差分放大器具有更强的驱动能力,采用了宽带放大器和输出缓冲器级联结构做为输出。同时,为了满足激光雷达系统的实际需求,采用复用失调隔离电路的方式,实现了级间带通滤波来限制放大器的适用带宽。采用CMSC的CMOS工艺进行了FDMA流片。测试结果表明,该芯片具有730.6 MHz的-3 dB带宽,在使用带通滤波器优化后的开环增益为23.5 dB,等效输入噪声密度为2.7 nV/sqrt(Hz),有效地降低了系统噪声。芯片采用3.3 V电源供电,功耗为102.3 mW,整体面积为0.25 mmc×0.25 mm。作为激光雷达全系统集成芯片中的一部分,较好地满足系统指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号