共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the thermal and electrical properties of packed carbon nanofibers (P-CNFs) have been investigated. A short-hot-wire (SHW) technique was applied to determine simultaneously the thermal conductivity and thermal diffusivity of P-CNFs. In SHW measurements, a platinum wire coated with an alumina layer served as both the heating source and the thermometric sensor. A curve fitting method by matching the experimental data and numerical simulated values was proposed for determining the thermal conductivity and thermal diffusivity of P-CNFs with different packed densities. The electrical conductivities were measured by a four-terminal method where a special vessel with electrodes with circular plates was used. The results indicated that the electrical conductivity increases linearly with an increase in packed density. The thermal conductivity and thermal diffusivity also increase with an increase in packed density. The relation between the thermal conductivity and the electrical conductivity has been shown to be approximately linear. The SHW technique combined with the curve fitting method would be applicable to many kinds of materials.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China. 相似文献
2.
Metal foams are one of the most interesting types of materials although there is limited information concerning their thermal and electrical conductivity. Closed cell different density Alporas foams are investigated, which has one of the most homogeneous cell size distribution recently. Comparative method has been chosen to determine the thermal conductivity of the samples in the function of the temperature at 30, 100, 200, 300, 400, 500 °C. For measuring the electrical conductivity of aluminium foams a special low frequency eddy current measuring apparatus was used. The ratio of thermal and electrical conductivity was calculated and shown an increasing function by the density of the foams. 相似文献
3.
X. Zhang W. Hendro M. Fujii T. Tomimura N. Imaishi 《International Journal of Thermophysics》2002,23(4):1077-1090
In this paper, the thermal conductivity and thermal diffusivity of four kinds of polymer melts were measured by using the transient short-hot-wire method. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a wire with the same length-to-diameter ratio and boundary conditions as those in the actual experiments. The present method is particularly suitable for measurements of molten polymers where natural convection effects can be ignored due to their high viscosities. The results have shown that the present method can be used to measure the thermal conductivity and thermal diffusivity of molten polymers within uncertainties of 3 and 6%, respectively. Further, the thermal conductivity and thermal diffusivity of solidified samples were also measured and discussed. 相似文献
4.
聚氨酯/二氧化硅包覆多壁碳纳米管复合材料的导热与电绝缘性能 总被引:1,自引:0,他引:1
通过溶胶-凝胶法制备了厚度为30nm-50nm的二氧化硅(SiO2)包覆多壁碳纳米管(SiO2-MWNTs),并与聚氨酯(PU)复合制备了PU/SiO2-MWNT复合材料。研究了SiO2-MWNTs对PU导热电绝缘性能的影响。结果表明,SiO2包覆层增强了MWNTs与PU之间的界面相互作用,促进了MWNTs在PU中的分散。由于SiO2包覆层的电绝缘作用,PU/SiO2-MWNT复合材料保持了PU的电绝缘性能。同时SiO2包覆层作为过渡层,降低了PU与MWNTs间的模量失配,减少了声子的界面散射,提高了PU/SiO2-MWNT复合材料的导热性能。当SiO2-MWNTs的质量分数为0.5%和1.0%时,PU/SiO2-MWNT复合材料的热导率分别提高了53.7%和63.8%。 相似文献
5.
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids 总被引:4,自引:0,他引:4
This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient short-hot-wire technique. To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy, the short-hot-wire probes are carefully coated with a pure Al2O3 thin film. Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity, the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating. The electrical leakage of the short-hot-wire probes is frequently checked, and only those probes that are coated well are used for measurements. In the present study, the effective thermal conductivities and thermal diffusivities of Al2O3/water, ZrO2/water, TiO2/water, and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified. The average diameters of Al2O3, ZrO2, TiO2, and CuO particles are 20, 20, 40, and 33 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser, when the spherical nanoparticles are dispersed into fluids. 相似文献
6.
7.
A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%. 相似文献
8.
9.
10.
首先制备了聚碳酸酯/氮化硼(PC/BN)复合材料,考察了BN含量对复合材料导热性能和力学性能的影响,实验结果表明BN可以提高PC的导热性能,当BN含量为30%时,PC/BN复合材料的导热系数为1.38 W/(m·K),比纯PC的导热系数提高了约7倍,但PC的力学性能损坏严重。在PC/BN复合材料中填充少量碳纤维(CF),结果表明少量CF的加入,不仅可以进一步提高PC/BN复合材料的导热性能,而且还可以较显著地改善其力学性能。当CF含量为7%时,PC/BN/CF的导热系数、拉伸强度、弯曲强度和冲击强度比PC/BN复合材料的分别提高了14.5%,113%,64%和157%。 相似文献
11.
通过在中间相沥青基炭纤维表面化学镀铜以提高纤维导电性能,并以热压法制备了短切镀铜炭纤维(Cu-CF)增强ABS树脂导电复合材料。采用SEM、EDS、XRD等表征方法研究了Cu-CF的镀层厚度、Cu-CF界面结构,以及镀铜厚度和Cu-CF的含量对复合材料导电性能的影响。研究表明,化学镀铜是铜晶粒不断长大与晶体结构更加致密的过程。Cu-CF的界面粘结受镀层厚度的影响,随着镀层厚度的增加,镀层与纤维之间出现间隙。Cu-CF的电阻率随镀层厚度的增加急剧降低,当镀层厚度增大至695nm后电阻率趋于稳定。采用镀层厚度为632nm的Cu-CF为增强相,当其体积含量为20%时,Cu-CF/ABS复合材料的电阻率为5.87×10-4Ω·cm,在导电功能材料领域具有很好的应用前景。 相似文献
12.
沈海军 《材料科学与工程学报》2009,(5)
分析了螺旋状碳纳米管沿其轴向的热传导特性,给出了螺旋碳纳米管轴向热传导系数ks的经验表达式。为验证ks公式的有效性,还将螺旋碳纳米管ks的理论解和相应的有限元结果进行了比较。结果发现,螺旋碳纳米管的ks理论解和有限元结果较为接近。本文螺旋碳纳米管的轴向热传导系数ks表达式对人们进一步研究螺旋碳纳米管的热学特性具有重要的参考意义。 相似文献
13.
填充型聚合物基复合材料的导电和导热性能 总被引:7,自引:0,他引:7
研究了高密度聚乙烯为基体、炭黑和炭纤维为填料复合体系的导电和导热性能。发现当导电填料的含量达到渗流阈值时,复合材料的电导率急剧升高;而在渗流阈值附近,其热导率未出现突变。这表明电导渗流现象不完全是由导电粒子通过物理接触生成导电链所致。其导电机制是相当数量的导电粒子相互发生隧道效应。 相似文献
14.
用原位聚合法制备了聚苯胺/碳纳米管复合材料,研究了碳纳米管加入时间、搅拌速度等工艺因素对复合材料导电性能的影响。用四极电子电位差计和HT600透射电子显微镜对该复合材料的导电性能和微观形态作了检测。试验结果表明:在原位复合条件下,聚苯胺可以完全包覆在碳纳米管上,而且碳纳米管在聚苯胺基体中呈网状分布,使复合材料的导电性能得到改善。 相似文献
15.
16.
V. Drach M. Wiener G. Reichenauer H.-P. Ebert J. Fricke 《International Journal of Thermophysics》2007,28(5):1542-1562
The carbon-composite under investigation consists of a felt of carbon fibers infiltrated by a nanoporous sol-gel derived carbon
aerogel; in addition, cracks caused by the shrinkage of the gel upon drying are present within the composite. Due to the anisotropic
structure of the felt, consisting of a pinned stack of fiber mats, the thermal conductivity of the compound is anisotropic.
The components of the thermal conductivity in the different directions were measured at room temperature using a non-contact
technique, which was formerly established for fibers and foils. Here, a high-power laser diode is used for non-contact heating
and a thermographic system for non-contact detection of the surface temperature of the samples. The stationary profile of
the surface temperature next to the laser focus was evaluated with respect to the lateral thermal conductivity. Using a line-shaped
laser focus, a one-dimensional heat flow within the samples was established and the two relevant components of the thermal
conductivity in the different directions could be separated by investigating slices of the composite with different orientation
to the main fiber orientation of the felt. The anisotropy of the thermal conductivity, i.e., the ratio of the components perpendicular
and parallel to the felt surface, was determined to be about two under vacuum conditions. This relatively small thermal anisotropy
was in qualitative agreement with preliminary tests of the electrical conductivity. In addition, local inhomogeneities due
to macroscopic voids within the samples influenced the observed temperature profile. As alternative measurement variants,
point-shaped laser-heating of sample discs was used and evaluated in terms of a two-dimensional heat flow and periodic, i.e.,
dynamical heating of the sample slices with a line-shaped laser focus was used. The reliability of the results was also tested
by comparing them to data derived with a guarded-hot-plate measurement of a (1.1 × 15 × 15) cm3 large tile.
Paper presented at the Seventeenth European Conference on Thermophysical Properties, 1 September 5–8, 2005, Bratislava, Slovak
Republic. 相似文献
17.
碳纳米管纱是完全由碳纳米管构成的宏观材料,因其类似“气凝胶”的结构,具有较大的比表面积,相对于普通宏观材料,会有更多的热量通过表面热辐射耗散出去。本文详细地推导了电加热时,准一维热传播材料表面温度分布和热导率计算公式,并引入热辐射项对上述传热过程进行修正,获得表面真实温度分布,进而结合碳纳米管纱的物理性质,分析了测试样品长度对碳纳米管纱名义热导率(指测试获得的热导率)的影响。对于长度为5 mm的碳纳米管纱测试样品,名义热导率约为真实热导率的4倍。 相似文献
18.
SiC纤维是复合材料SiCf/SiC中的组分材料, 其力学性能已经得到实验验证, 但热学性能尚未见报道。本研究采用综合T型法测量了不同温度热处理的KD-II型SiC纤维在80~300 K温度范围内的电导率、热导率和塞贝克系数, 热处理温度分别为1400、1500和1600℃。研究发现, 在实验设定的热处理温度范围内, SiC纤维电导率不随热处理温度改变而改变, 但其热导率随热处理温度升高有显著的变化。在环境温度为290 K时, 1600℃热处理的SiC纤维热导率为11.6 W•m-1•K-1, 比未热处理的材料提高了42%以上。 相似文献
19.
The paper reports further developments of the transient hot-wire technique. The particular development of interest is the extension of the technique to study polar, or electrically-conducting gases with a relatively low thermal conductivity but a high thermal diffusivity, circumstances which occur at low density and therefore low pressure, for gases of high molecular weight. The theory of the transient hot-wire instrument is examined again in order to guide a revised design of the thermal conductivity cell with this particular application in mind. Test measurements have then been conducted on helium, argon, and propane at low and moderate pressures to confirm that the instrument operates in accordance with the theory of it. The satisfactory completion of these tests demonstrates that the new equipment overcomes many of the defects observed in earlier variants of the instrument for application to the study of refrigerant gases. 相似文献
20.
Juekuan Yang Yang Yang Scott W. Waltermire Timothy Gutu Alfred A. Zinn Terry T. Xu Yunfei Chen Deyu Li 《Small (Weinheim an der Bergstrasse, Germany)》2011,7(16):2334-2340
The intrinsic thermal conductivity of an individual carbon nanotube and its contact thermal resistance with the heat source/sink can be extracted simultaneously through multiple measurements with different lengths of the tube between the heat source and the heat sink. Experimental results on a 66‐nm‐diameter multiwalled carbon nanotube show that above 100 K, contact thermal resistance can contribute up to 50% of the total measured thermal resistance; therefore, the intrinsic thermal conductivity of the nanotube can be significantly higher than the effective thermal conductivity derived from a single measurement without eliminating the contact thermal resistance. At 300 K, the contact thermal resistance between the tube and the substrate for a unit area is 2.2 × 10?8 m2 K W?1, which is on the lower end among several published data. Results also indicate that for nanotubes of relatively high thermal conductance, electron‐beam‐induced gold deposition at the tube–substrate contacts may not reduce the contact thermal resistance to a negligible level. These results provide insights into the long‐lasting issue of the contact thermal resistance in nanotube/nanowire thermal conductity measurements and have important implications for further understanding thermal transport through carbon nanotubes and using carbon nanotube arrays as thermal interface materials. 相似文献