首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac arrhythmias are a frequent event in chronic hemodialysis patients. The aim of this study was to evaluate the efficacy and safety of acetate-free hemofiltration with potassium-profiled dialysate (AFB-K) dialysis compared with constant potassium acetate-free biofiltration (AFB). Twelve patients (mean age 79 years) affected by cardiac arrhythmias or at a high risk for arrhythmia (advanced age, hypertension, left ventricular hypertrophy, heart valve disease, coronary artery disease, diabetes, paroxysmal atrial fibrillation) participated in a single-center, sequential cohort study. All were treated with hemodialysis 3 times per week, using constant potassium AFB for the first 3 weeks, followed by an AFB-K dialysate for the subsequent 3 weeks. The hemofilter, duration of dialysis, and electrolyte concentration were the same in both treatments. Both AFB-K and constant potassium AFB dialytic techniques were safe and well tolerated. The results of biochemical tests were similar, except for serum potassium levels after 2 hr of dialysis, which were significantly higher in the AFB-K group (4.0 mmol/L) than in the constant potassium AFB group (3.6 mmol/L) (p<0.001). All cardiac variables improved during AFB-K dialysis. There was a significant reduction of postdialysis QT intervals corrected for heart rate in the AFB-K group (448.8 ms) compared with the constant potassium AFB group (456.8 ms) (p=0.039). The severity and mean number of ventricular extasystoles also decreased (163.5 vs. 444.5/24 hr). Potassium profiling during hemodialysis treatment may be beneficial for patients with arrhythmias or at those risk of arrhythmias, particularly those with predialysis hyperkalemia.  相似文献   

2.
Magnesium is a crucial mineral, involved in many important physiological processes. Magnesium plays a role of maintaining myocardial electrical stability in hemodialysis patients. Intradialytic hypotension is a common complication of dialysis and it is more common with acetate dialysate. The significance of the intradialytic changes of magnesium and their relation to parathyroid hormone (PTH) level and calcium changes during dialysis, and their relation to hypotensive episodes during dialysis are interesting. The aim of this work is to investigate the intradialytic changes of serum magnesium in chronic hemodialysis patients with different hemodialysis modalities and the relation to other electrolytes and to PTH, and also the relation to intradialytic hypotension. The present study was conducted on 20 chronic renal failure patients. All patients were on regular hemodialysis thrice weekly 4 hr each using acetate dialysate (group I). To study the effect of an acetate-based dialysate vs. a bicarbonate-based dialysate on acute changes of magnesium, calcium, phosphorus, and PTH during a hemodialysis session, the same patients were shifted to bicarbonate dialysis (group II). All patients were subjected to full history and clinical examination, predialysis laboratory assessment of blood urea nitrogen (BUN), serum creatinine, albumin, and hemoglobin, serial assessment of magnesium, calcium, phosphorus, and parathyroid hormone at the start of the hemodialysis session, 2 hr later, and at the end of the session, blood pH, and electrocardiogram (ECG) presession and postsession. All patients were urged to fix their dry weight, diet, and current medications. None of the patients had diabetes, neoplasia, liver disease, or cachexia, nor had they been recently on magnesium-containing drugs or previously parathyroidectomized. Hemodialysis sessions were performed by volumetric dialysis machines using the same electrolyte composition. Magnesium level significantly increased in the bicarbonate group at the end of dialysis (0 hr: 2.73+/-0.87, 2 hr: 3.21+/-1.1, and at 4 hr: 5.73+/-1.45 mg/dL, p value <0.01), while it significantly decreased in the acetate group (0 hr: 3.00+/-0.58, 2 hr: 2.26+/-0.39, 4 hr: 1.97+/-0.33 mg/dL, p value <0.01). Calcium level significantly increased in the bicarbonate group (p=0.024) but not in the acetate group. Phosphorus level significantly decreased in both acetate and bicarbonate groups. PTH level did not significantly change in either group, p value > or =0.05. Blood pH significantly increased, changing from acidic to alkaline pH, with both modalities of hemodialysis. ECG showed no significant changes during sessions with either type of dialysate. Hypotension was significantly higher in group I compared with group II (p=0.01), and this hypotension was positively correlated with a decrease in serum magnesium level in group I. Intradialytic changes in serum magnesium have no correlation with intradialytic changes in serum calcium or with PTH level. However, it was significantly correlated with hypotension during the dialysis session, especially with acetate dialysate. Further investigations are needed to determine whether or not this is true in patients using bicarbonate dialysis.  相似文献   

3.
We studied phosphorus (P) dynamics and its relation to urea dynamics in a wide range of dialyses by measuring predialysis and postdialysis serum P levels and all removed P and urea in dialysate during 455 hemodialyses. Dialyses were performed at different frequencies (range 3-6 treatments/wk); duration of dialysis (t) (range 80-560 minutes), varied blood and dialysate flow, and with high-flux and low-flux membranes. Kt/V-P, Kt/V-urea, weekly removal of P-and urea and removal volumes (Vr) and their relationships to varying dialyses, and predialysis concentrations, and protein catabolic rates were studied in linear and multiple regression analyses. A weekly dialysis time of > 30 hours was needed to maintain serum P concentration normal without the use of phosphate binders. Vr-P as a percentage of body weight was dependent on predialysis serum P and increased steeply as predialysis serum P decreased and dialysis time was prolonged. There was no relationship between Vr-urea and Vr-P. Phosphorus removal per week was mainly dependent on weekly frequency, and time on dialysis and > 38 h/wk were necessary to remove the recommended P intake. Phosphorus shows highly variable dynamics during dialysis. The body maintains extracellular P concentration by releasing P from large compartments when the dialysis time is prolonged and the serum concentration of P decreases during dialysis. Vr-P shows huge variation between patients and in an individual patient, depending on predialysis serum P. Kt/V is inaccurate in describing P removal. To remove P efficiently, it is most important to perform long and more frequent hemodialysis.  相似文献   

4.
Hypotension is the most common complication of outpatient hemodialysis sessions, with a reported prevalence of 4% to 31%, depending on which definition has been used and whether patients are symptomatic and nursing interventions were required. Dialysis centers which mix the dialysate in the dialysis machine have the opportunity to individualize the composition of the dialysate for patients. This permits a choice of dialysate sodium, potassium, calcium, magnesium, bicarbonate, acetate, and citrate concentrations and temperature. Studies have reported a higher intradialytic systolic blood pressure and fewer episodes of intradialytic hypotension when using a higher dialysate sodium, calcium, magnesium concentrations and lower temperature, but no clinical advantage for changing the potassium, bicarbonate, or citrate for acetate concentrations. The introduction of newer technology allowing real time measurements of plasma electrolyte concentrations will potentially allow changing the dialysate composition to reduce the risk of intradialytic hypotension without increasing the risk of positive electrolyte balances.  相似文献   

5.
A patient on hemodialysis for end-stage renal disease secondary to diabetic nephropathy was admitted in a coma with Kussmaul breathing and hypertension (232/124 mmHg). She had extreme hyperglycemia (1884 mg/dL), acidosis (total CO(2) 4 mmol/L), hyperkalemia (7.2 mmol/L) with electrocardiographic abnormalities, and hypertonicity (330.7 mOsm/kg). Initial treatment with insulin drip resulted in a decrease in serum potassium to 5.3 mmol/L, but no significant change in mental status or other laboratory parameters. Hemodialysis of 1.75 hours resulted in rapid decline in serum glucose and tonicity and rapid improvement of the acidosis, but no change in mental status, which began to improve slowly after the hemodialysis was stopped, but with ongoing treatment with continuous insulin infusion. The rate of decline in tonicity during hemodialysis (14.5 mOsm/kg/h) was high, raising concerns about neurological complications. In this case, extreme hyperglycemia with ketoacidosis, hyperkalemia, and coma developing in a hemodialysis patient responded to insulin infusion. Monitoring of the clinical status and the pertinent laboratory values is required to assess the need for other therapeutic measures including volume and potassium replacement and emergency dialysis. The indications for and risks of emergency dialysis in this setting are not clearly defined.  相似文献   

6.
Background: Cardiac arrhythmias are considered as one of the most important causes of mortality in patients on hemodialysis. Arrhythmias frequently occur in patients with chronic renal failure on regular hemodialysis with reported incidences varying from 30–48% of patients. These abnormalities can span from supraventricular to severe ventricular arrhythmia. There is an increased frequency of occurrence and clustering of arrhythmias around the dialysis time. Aim of the study: To detect the difference between acetate and bicarbonate dialysis as regard to the type and frequency of arrhythmia in those patients. Study design: This study was done on 20 male patients age 51–73, all have history of heart disease. Patients were divided into 2 equal groups using acetate in group 1 and bicarbonate in group 2. All patients were on regular hemodialysis (4 hours, thrice weekly). Careful history and clinical examination were done. Pre‐dialysis investigations included serum creatinine, blood urea nitrogen, serum sodium, potassium, calcium and phosphorus, serum albumin, hemoglobin, and arterial blood gases. Post‐dialysis serum potassium and arterial blood gases were measured. ECG and forty‐eight hours ambulatory monitor (Holter monitor)(before, during, and after hemodialysis, till the end of the dialysis day and throughout the following day) were performed. Results: Group 1 showed significantly less post‐dialysis supraventricular arrhythmias than in dialysis day (210.9 ± 236 and 62.3 ± 14.4), respectively. Significantly less ventricular arrhythmias in post‐dialysis than in dialysis day (30.7 ± 50.4, and 106.2 ± 128.4), respectively. While in Group 2 there were insignificant differences regarding supraventricular arrhythmias (21.9 ± 28.9 and 16.6 ± 36.3) and ventricular arrhythmias (22.9 + 7.8 and 29.6 + 12.8) in dialysis day than in post‐dialysis day. There was significantly higher frequency of supraventricular and ventricular arrhythmias in the dialysis day in acetate hemodialysis in comparison to bicarbonate hemodialysis. Conclusion: Bicarbonate hemodialysis is less arrhythmogenic in comparison to acetate hemodialysis and has better effect on the blood pH and greater degree of base repletion. Continuous ambulatory ECG recording (Holter) is a useful tool in detecting arrhythmias in dialysis patients.  相似文献   

7.
Severe hyperparathyroidism is a challenge on hemodialysis. The definition of dialysate calcium (Ca) is a pending issue with renewed importance in cases of individualized dialysis schedules and of portable home dialysis machines with low‐flow dialysate. Direct measurement of calcium mass transfer is complex and is imprecisely reflected by differences in start‐to‐end of dialysis Ca levels. The study was performed in a dialysis unit dedicated to home hemodialysis and to critical patients with wide use of daily and tailored schedules. The Ca‐phosphate (P)‐parathyroid hormone (PTH) profile includes creatinine, urea, total and ionized Ca, albumin, sodium, potassium, P, PTH levels at start, mid, and end of dialysis. “Severe” secondary hyperparathyroidism was defined as PTH > 300 pg/mL for ≥3 months. Four schedules were tested: conventional dialysis (polysulfone dialyzer 1.8–2.1 m2), with dialysate Ca 1.5 or 1.75 mmol/L, NxStage (Ca 1.5 mmol/L), and NxStage plus intradialytic Ca infusion. Dosages of vitamin D, calcium, phosphate binders, and Ca mimetic agents were adjusted monthly. Eighty Ca‐P‐PTH profiles were collected in 12 patients. Serum phosphate was efficiently reduced by all techniques. No differences in start‐to‐end PTH and Ca levels on dialysis were observed in patients with PTH levels < 300 pg/mL. Conversely, Ca levels in “severe” secondary hyperparathyroid patients significantly increased and PTH decreased during dialysis on all schedules except on Nxstage (P < 0.05). Our data support the need for tailored dialysate Ca content, even on “low‐flow” daily home dialysis, in “severe” secondary hyperparathyroid patients in order to increase the therapeutic potentials of the new dialysis techniques.  相似文献   

8.
9.
Introduction Hyperphosphatemia and cardiovascular mortality are associated particularly with end‐stage renal disease. Available therapeutic strategies (i.e., diet restriction, calcium [or not]‐based phosphate binders, calcimimetics) are associated with extrarenal blood purification. Compartmentalization of phosphate limits its depuration during hemodialysis. Several studies suggest that plasmatic pH is involved in the mobilization of phosphate from intracellular to extracellular compartments. Consequently, the efficiency of modified bicarbonate conductivity to purify blood phosphate was tested. Methods Ten hemodialysis patients with chronic hyperphosphatemia (>2.1 mmol/L) were included in the two three–sessions‐per week periods. Bicarbonate concentration was fixed at 40 mmol/L and 30 mmol/L in the first and second periods, respectively. Phosphate depuration was evaluated by phosphate mobilization clearance (KM). Findings Although bicarbonatemia was lower during the second period (21.0 ± 2.7 vs. 24.4 ± 3.1 mmol/L, P < 0.01), no difference was observed in phosphatemia (2.4 ± 0.5 vs. 2.3 ± 0.4 mmol/L, P = NS). The in‐session variation of phosphate was lower (?1.45 ± 0.42 vs. ?1.58 ± 0.44 mmol/L, P < 0.05) and KM was higher during the second period (82.94 ± 38.00 vs. 69.74 ± 24.48 mL/min, P < 0.05). Discussion The decrease of in‐session phosphate and the increase in KM reflect phosphate refilling during hemodialysis. Thus, modulation of serum bicarbonate may play a role in controlling the phosphate pool. Even though correcting metabolic acidosis during hemodialysis remains important, alkaline excess can impair phosphate mobilization clearance. Clinical trials are needed to test the efficiency and relevance of a strategy where bicarbonatemia is corrected less at the beginning of sessions.  相似文献   

10.
Introduction: Hemodialysis patients frequently receive vancomycin for treatment of gram‐positive bacterial infections. This drug is most conveniently administered in outpatient dialysis units during the hemodialysis treatment. However, there is a paucity of data on the removal of vancomycin by high‐flux polyamide dialyzers. Methods: This is a prospective crossover study in which seven uninfected chronic hemodialysis patients at three dialysis units received vancomycin 1 gram intravenously over one hour immediately after the dialysis treatment (Phase 1), and vancomycin 1.5 grams during the last hour of dialysis treatment using a polyarylethersulfone, polyvinylpyrrolidone, polyamide high‐flux (Polyflux 24R) dialyzer (Phase 2). There was a three‐week washout period between phases. Serial serum vancomycin concentrations were used to determine the removal of vancomycin when administered during dialysis. Findings: Dialysis removed 35 ± 15% (range 18‐56%) of the vancomycin dose when administered during the last hour of dialysis. The calculated area under the curve (AUC) of vancomycin levels for 0‐44.5 hours from the start of infusion were similar between the two phases (AUCPhase 1 884 ± 124 mg‐hr/L, mean ± SD; AUCPhase 2 856 ± 208 mg‐hr/L; P=0.72). Serum vancomycin concentrations immediately prior to the next dialysis treatment following vancomycin administration were also similar between the two phases (13.1 ± 2.7 mg/L in Phase 1 and 12.3 ± 3.3 mg/L in Phase 2; P=0.55). Discussion: When using a polyarylethersulfone, polyvinylpyrrolidone, and polyamide high‐flux HD membrane with a 24R Polyflux dialyzer, vancomycin can be administered during the last hour of dialysis if the dose that is prescribed for intra‐dialysis dosing is empirically increased to account for intra‐dialytic drug removal.  相似文献   

11.
Benefits of dialysate with greater calcium (Ca) concentration are reported in nocturnal hemodialysis (NHD) to prevent Ca depletion and subsequent hyperparathyroidism. Studies with patients dialyzing against 1.25 mmol/L Ca baths demonstrate increases in alkaline phosphatase (ALP) and parathyroid hormone (PTH) and increasing dialysate Ca subsequently corrects this problem. However, whether 1.5 or 1.75 mmol/L dialysate Ca is most appropriate for NHD is yet to be determined, and differences in the effect on mineral metabolism of daily vs. alternate daily NHD have also not been well defined. We retrospectively analyzed mineral metabolism in 48 patients, from 2 institutions (30 at Monash and 18 at Geelong), undergoing home NHD (8 hr/night, 3.5-6 nights/week) for a minimum of 6 months. Thirty-seven patients were dialyzed against 1.5 mmol/L Ca bath and 11 patients against 1.75 mmol/L. We divided patients into 4 groups, based on dialysate Ca and also on the hours per week of dialysis, <40 (1.5 mmol/L, n=29 and 1.75 mmol/L, n=8) or > or =40 (n=4 and 7). We compared predialysis and postdialysis serum markers, time-averaged over a 6-month period, and the administration of calcitriol and Ca-based phosphate binders between 1.5 and 1.75 mmol/L Ca dialysate groups. Baseline characteristics between all groups were similar, with a slightly longer, but nonsignificant, duration of NHD in both 1.75 mmol/L dialysate groups compared with 1.5 mmol/L. The mean predialysis Ca, phosphate, and Ca x P were similar between the 1.5 and 1.75 mmol/L groups, regardless of NHD hr/week. Postdialysis Ca was significantly greater, with 1.75 vs. 1.5 mmol/L in those dialyzing <40 hr/week (2.64+/-0.19 vs. 2.50+/-0.12 mmol/L, p=0.046), but postdialysis Ca x P were similar (2.25+/-0.44 vs. 2.16+/-0.29 mmol(2)/L(2), p=0.60). Parathyroid hormone was also lower with 1.75 vs. 1.5 mmol/L baths in the <40 hr/week groups (31.99+/-26.99 vs. 14.47+/-16.36 pmol/L, p=0.03), although this difference was not seen in those undertaking NHD > or =40 hr/week. Hemoglobin, ALP, and albumin were all similar between groups. There was also no difference in vitamin D requirement when using 1.75 mmol/L compared with the 1.5 mmol/L dialysate. Multivariate analysis to determine independent predictors of postdialysis serum Ca showed a statistically significant positive association with predialysis Ca, dialysate Ca, and total NHD hr/week. An elevated dialysate Ca concentration is required in NHD to prevent osteopenia but differences in serum markers of mineral metabolism between 1.5 and 1.75 mmol/L Ca dialysate in NHD in our study were few. This was similar for patients undertaking NHD <40 or > or =40 hr/week, although differences in the frequency of NHD may also be as important as dialysate Ca with regard to serum Ca levels. With concerns that prolonged higher Ca levels contribute to increased cardiovascular mortality, the optimal Ca dialysate bath is still unknown and further studies addressing bone metabolism with larger NHD numbers are required.  相似文献   

12.
13.
Hypophosphatemia is observed in patients undergoing nocturnal hemodialysis. Phosphate is commonly added to the dialysate acid bath, but systematic evaluation of the safety and reliability of this strategy is lacking. The objectives of this study were 4‐fold. First, we determined whether predictable final dialysate phosphate concentrations could be achieved by adding varying amounts of Fleet® enema. Second, we assessed the stability of calcium (Ca) and phosphate dialysate levels under simulated nocturnal hemodialysis conditions. Third, we assessed for Ca‐phosphate precipitate. Finally, we evaluated whether dialysate containing Fleet® enema met the current sterility standards. We added serial aliquots of enema to 4.5 L of dialysate acid concentrate and proportioned the solution on Gambro and Althin/Baxter dialysis machines for up to 8 hours. We measured dialysate phosphate, Ca, pH, and bicarbonate concentrations at baseline, and after simulated dialysis at 4 and 8 hours. We evaluated for precipitation visually and by assessing optical density at 620 nm. We used inoculation of agar to detect bacteria and Pyrotell reaction for endotoxin. For every 30 mL of Fleet® (1.38 mmol/mL of phosphate) enema added, the dialysate phosphate concentration increased by 0.2 mmol/L. There were no significant changes in dialysate phosphate, Ca, pH, and bicarbonate concentrations over 8 hours. No precipitate was observed in the dialysate by optical density measures at 620 nm for additions of up to 90 mL of enema. Bacterial and endotoxin testing met sterility standards. The addition of Fleet® enema to dialysate increases phosphate concentration in a predictable manner, and no safety problems were observed in our in vitro studies.  相似文献   

14.
"NxStage System One" is increasingly used for daily home hemodialysis. The ultrapure dialysate volumes are typically between 15 L and 30 L per dialysis, substantially smaller than the volumes used in conventional dialysis. In this study, the impact of the use of low dialysate volumes on the removal rates of solutes of different molecular weights and volumes of distribution was evaluated. Serum measurements before and after dialysis and total dialysate collection were performed over 30 times in 5 functionally anephric patients undergoing short-daily home hemodialysis (6 d/wk) over the course of 8 to 16 months. Measured solutes included β2 microglobulin (β2M), phosphorus, urea nitrogen, and potassium. The average spent dialysate volume (dialysate plus ultrafiltrate) was 25.4±4.7 L and the dialysis duration was 175±15 min. β2 microglobulin clearance of the polyethersulfone dialyzer averaged 53±14 mL/min. Total β2M recovered in the dialysate was 106±42 mg per treatment (n=38). Predialysis serum β2M levels remained stable over the observation period. Phosphorus removal averaged 694±343 mg per treatment with a mean predialysis serum phosphorus of 5.2±1.8 mg/dL (n=34). Standard Kt/V averaged 2.5±0.3 per week and correlated with the dialysate-based weekly Kt/V. Weekly β2M, phosphorus, and urea nitrogen removal in patients dialyzing 6 d/wk with these relatively low dialysate volumes compared favorably with values published for thrice weekly conventional and with short-daily hemodialysis performed with machines using much higher dialysate flow rates. Results of the present study were achieved, however, with an average of 17.5 hours of dialysis per week.  相似文献   

15.
16.
Introduction: The dialysate bicarbonate (DB) influences the acid‐base balance in dialysis patients. Very low and high serum bicarbonate (SB) have been related with a higher mortality. Acid‐base balance also has been associated with hemodynamic effects in these patients. The trial aim was to compare the effect of DB concentration variation on SB levels in maintenance hemodiafiltration (HDF) patients and the effect on intradialytic hypotension and interdialytic weight gain. Methods: A prospective study, with 9 months of follow‐up, involving 93 patients, divided in two groups: group 1 and group 2 with a DB of 34 mmol/L and 30 mmol/L, respectively, with monitoring of pre and post HDF SB, intradialytic hypotension, and interdialytic weight gain. Findings: Pre dialysis SB was higher in group 1: median concentration of 22.7 mmol/L vs. 21.1 mmol/L (P < 0.001). Post dialysis SB levels were higher in group 1: median concentration of 28.0 mmol/L vs. 25.3 mmol/L (P < 0.001). Post dialysis SB in alkalotic range was only detected in group 1 (51.2% of the patients). No significant differences were detected in intradialytic hypotension rate [28.0 vs. 27.4 episodes per 1000 sessions in group 1 and 2, respectively, (P = 0.906)] or in average interdialytic weight gain [2.9% vs. 3.0% in group 1 and 2, respectively, (P = 0.710)]. Discussion: DB of 30 mmol/L appears to be associated with SB levels closer to physiological levels than 34 mmol/L. The bicarbonate dialysate, in the tested concentrations, did not appear to have a significant impact on intradialytic hypotension and interdialytic weight gain in maintenance HDF patients.  相似文献   

17.
Metabolic acidosis is frequently present, poorly controlled, and associated with adverse effects among hemodialysis patients. Potential determinants of metabolic acidosis include endogenous acid production, administration of alkali, neutralization of acid by buffers, dilution of serum bicarbonate by interdialytic fluid gain, and loss of bicarbonate in stool. Understanding the relative importance of these determinants may help guide efforts to manage metabolic acidosis. We used chart abstraction, patient interviews, and laboratory testing to assess variables related to acid production (protein breakdown), alkali administration (dialysis dose, missed treatments, dialysate bicarbonate concentration, oral bicarbonate supplements), acid buffering (phosphorus binders), dilution of bicarbonate (interdialytic weight gain), and loss of bicarbonate in stool (diarrhea) for 190 randomly selected patients from 44 hemodialysis facilities. We used multivariate analyses to determine which potential determinants were independently associated with predialysis serum bicarbonate levels. Of all patients, 30% had metabolic acidosis (serum bicarbonate level <22 mEq/L). On multivariate analysis, metabolic acidosis was more likely with increased protein nitrogen appearance (odds ratio [OR] 1.60 per 0.2 g/kg/day, p=0.001) and less likely with increased Kt/V (OR 0.61 per 0.20 increase in Kt/V, p<0.001) and with increased calcium carbonate use (OR 0.38 per 2 g/day, p=0.003). Key determinants of metabolic acidosis among hemodialysis patients are protein breakdown, dialysis dose, and specific phosphorus binders. Further work is needed to develop interventions to address these determinants.  相似文献   

18.
To report endotoxemia presented in a case with multiple myeloma (MM) treated by high cutoff hemodialysis (HCO‐HD) being prevented by using ultrapure dialysate. A female inpatient with MM received six times HCO‐HD (HCO 2100 dialyzer) within 3 weeks after initiation of a chemotherapy based on vincristine + epirubicin + dexamethasone protocol. Conventional dialysate was used in the first three times and then changed to ultrapure dialysate due to elevation of body temperature after HCO‐HD. Free light chains (FLC) and endotoxin levels in blood and dialysate were monitored. After six times HCO‐HD, her serum FLC λ decreased from 4689 mg/L to 492.7 mg/L, with a trend of decline of serum creatinine. The clearance, reduction ratio, and removal amount of FLC λ was 38.4 mL/min, 71.0–85.2%, and 9.06–18.02 g, respectively, in the setting of dialysate flow rate 500 mL/min, while in the setting of dialysate flow rate 200 mL/min, the removal efficacy of FLC λ was lower than the former. A rise of body temperature up to 38.5°C after treatment and endotoxemia (endotoxin levels 0.122 EU/mL) was found when using conventional dialysate (endotoxin levels 0.112–0.145 EU/mL), but not seen after changing to ultrapure dialysate. Combined with appropriate chemotherapy, HCO‐HD can effectively remove and reduce blood FLC. Attention should be paid to the endotoxemia and the rise of temperature after treatment when conventional dialysate is used, which can be prevented by using ultrapure dialysate.  相似文献   

19.
Metformin (MTF) is one of the most common oral agents used to treat diabetes mellitus. Intoxication is associated with lactic acidosis and has significant clinical consequences. We report 12 cases requiring dialytic intervention. Twelve patients were analyzed from 2005 to 2010; 10 of these patients were treated with dialysis. Conventional hemodialysis (HD) and continuous veno-venous hemodialysis treatments with bicarbonate dialysis were used, and the results were presented as mean and standard deviation. The results are as follows: 33% of the patients were male, hospital stay was 9.3 (± 12) days, average MTF dose 1.7 g/day, mortality was 25%. Baseline glomerular filtration rate for these patients was 51.5?mL/min, with an average age of 64 (± 11) years. On presentation, all had acute kidney injury with blood urea nitrogen/creatinine 75 (± 30)/8.1 (± 3.7) mg/dL, lactic acid 12.4 (± 8.1) mmol/L, pH?7.04 (± 0.19), bicarbonate 7.2 (± 4.5) mmol/L. Metformin level was 25 (± 17) μg/mL; anion gap was 28 (± 9), and serum potassium was 5.4 (± 1.3) mEq/L. Seventy percent of patients were treated with conventional HD. Patients required 4 (± 5) dialysis treatments at blood flow QB 330 (± 53), dialysis flow QD 571 (± 111) for 305 (± 122) minutes. Postdialysis, the acidosis parameters improved: bicarbonate 19.2 (± 4.1) mmol/L, lactic acid 6 (± 4) mmol/L and MTF levels decreased 8.9 (± 5.7) μg/mL. Metformin percentage removal was calculated to be 60% (± 24). No difference was found between HD and continous veno-venous hemodialysis. The only difference between survivors was the age 53 (± 7) vs. 78 (± 10) (P?相似文献   

20.
Go slow” dialysis is a gentle, intermittent hemodialysis therapy for acute renal failure patients, with advantages compared to slow, continuous therapies. It employs a recirculating closed dialysate circuit. A two-pool urea kinetic model is elaborated to determine kinetic parameters from blood and dialysate concentrations. This will allow quantification of the therapy. Variable clearance is included to accurately describe the kinetic process. The model is tested in an acute renal failure patient. Solute removals, as determined from direct dialysis quantification and by the model, are comparable. Variable clearance is not required to determine the kinetic parameters, because the constant mean clearance delivers equal results. The dialysis dose, as defined, allows comparison with chronic renal therapies. It requires solute removal determined from dialysate sampling and time-averaged concentration (TAC) from the urea kinetic modeling. In the test patient, dialysis dose is lower compared to standard thrice-weekly therapies because of its lower efficiency and higher TAC, a result of his highly catabolic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号