首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
对黑美人土豆黄酮提取工艺及抗氧化性进行了研究。结果表明,影响黑美人土豆黄酮提取率的主要因素为温度、料液比和乙醇体积分数;最优工艺条件为提取温度78℃、乙醇体积分数62%,料液比1:35(g/mL)。在此工艺条件下,最大响应值(1.04%)和实验测定值(1.03%)相符合,说明响应面法优化黑美人土豆黄酮是可行和有效的。黑美人土豆黄酮提取物与VC、芦丁相比较清除DPPH自由基能力大于芦丁小于VC;黄酮质量浓度在不高于20μg/mL时清除ABTS自由基的能力和抗氧化力大于VC,但始终大于同质量浓度的芦丁,结果显示黑美人土豆黄酮提取物具有显著的抗氧化活性,可以作为潜在的抗氧化剂或功能性食品资源。  相似文献   

2.
目的研究小春花根黄酮提取工艺及其抗油脂氧化活性。方法以总黄酮提取率为考察指标,利用单因素试验结合响应面Box-Benhnken试验设计方法,研究乙醇浓度、料液比、提取时间、提取温度4个因素对提取工艺的影响,优化小春花根黄酮提取工艺;通过烘箱热贮藏实验研究小春花根黄酮对油脂的抗氧化作用。结果影响小春花根总黄酮提取的因素依次为:超声提取温度乙醇浓度提取时间料液比,小春花根总黄酮最佳工艺条件为:乙醇体积分数73%,料液比1:43(g/mL),提取时间73 min,提取温度71℃。黄酮提取得率为3.4299 mg/g,与理论预测值3.4913 mg/g接近。抗氧化活性分析表明,黄酮提取物有较强抗油脂氧化活性;对油脂的抗氧化能力与黄酮提取物浓度成正相关,1 mg/mL黄酮提取物与VC的抗氧化作用相当。结论小春花根黄酮对油脂良好的保护效果,在油脂抗氧化添加剂的应用方面具有潜在的开发价值。  相似文献   

3.
研究荷叶黄酮提取工艺条件,优化荷叶中黄酮提取的工艺参数;研究荷叶黄酮抗氧化作用。以百朋荷叶为原料,采用单因素试验及正交试验设计,从乙醇浓度、提取时间、提取温度、料液比等方面,对提取荷叶黄酮工艺进行优化;并研究荷叶黄酮对羟基自由基和超氧阴离子自由基的清除作用。结果表明:乙醇浸提荷叶黄酮的最佳工艺参数为乙醇浓度为60%、浸提温度70℃、浸提时间1小时、浸提固液比l:60;荷叶黄酮对羟自由基、超氧自由基均有明显的清除作用,且最高清除率分别为55%,45%;荷叶黄酮对油脂有一定的抗氧化性。结论:在优化工艺参数下荷叶中黄酮的提取率为130.83mg/g;荷叶黄酮有一定的抗氧化作用。  相似文献   

4.
研究超声波辅助提取柿叶总黄酮的工艺条件及其抗氧化活性。采用单因素试验与正交试验,考察乙醇浓度、固液比、超声功率、浸提温度及提取时间等因素对柿叶总黄酮提取率的影响,并以柿叶总黄酮体外清除DPPH自由基能力为指标,评价其抗氧化活性。结果表明,超声波辅助提取柿叶总黄酮最佳工艺条件为乙醇浓度为70%,固液比1∶20(g/mL),超声功率350 W,超声时间40 min,浸提温度55℃,提取2次,柿叶总黄酮得率约为0.70%(以干柿叶计);在0~100μg/mL范围内,柿叶总黄酮抗氧化能力高于VC,对DPPH自由基的体外清除率达85.96%;超过100μg/mL时,清除作用基本稳定不变,浓度和清除率不显示量效关系。通过拟合线性方程计算柿叶总黄酮的IC_(50)值为5.45μg/mL,表明柿叶黄酮是良好的抗氧化剂。  相似文献   

5.
研究红小豆中黄酮超声辅助提取工艺及其抗氧化活性。采用单因素结合正交试验的方法优化红小豆黄酮提取工艺,并利用DPPH·清除能力评价其抗氧化活性。结果表明:最佳工艺条件为乙醇浓度30%、料液比1∶80 (g/m L)、超声功率240 W、提取时间35 min。在此工艺条件下,红小豆黄酮提取率为30.77 mg/g。红小豆黄酮与BHT清除DPPH·的IC5 0分别为8.51、12.19μg/m L,表明红小豆黄酮具有强抗氧化活性。  相似文献   

6.
以枣叶为原料,枣叶黄酮提取率为指标,利用单因素分析结合正交试验的方法优化了枣叶黄酮的微波-离子液体辅助提取工艺条件,并研究了枣叶黄酮的抗氧化活性。结果表明:枣叶黄酮微波-离子液体辅助提取的最佳工艺条件为微波功率195 W、微波时间12 min,乙醇浓度60%、料液比1:25(g/mL)、离子液体1-辛基-3-甲基咪唑四氟硼酸盐的浓度为0.6 mol/L、提取次数2次。在该工艺条件下,黄酮提取率平均值为3.20%。抗氧化性研究显示,枣叶黄酮对DPPH自由基、羟自由基以及亚硝酸根离子均具有较强清除能力,IC_(50)分别为0.181 mg/mL、0.080 mg/mL和0.039 mg/mL,表明枣叶黄酮具有较强的抗氧化活性。  相似文献   

7.
以荷叶为原料,探讨闪式提取法提取荷叶黄酮的最佳工艺及其抗氧化作用。在单因素试验的基础上,选取液料比、乙醇浓度、提取时间为自变量,以荷叶黄酮得率为响应值,较为系统地研究了各因素及其交互作用对荷叶黄酮得率的影响,并通过对荷叶黄酮总还原能力及DPPH自由基清除能力的测定来评价其抗氧化活性。结果表明,利用闪式提取法提取荷叶黄酮的最佳工艺为:液料比21:1(m L/g)、乙醇浓度59%、提取时间30s。在此条件下时荷叶黄酮得率最高,平均值高达5.4993%,该法优于已有报道的其他提取法。抗氧化试验显示荷叶黄酮具有较强的总还原能力和DPPH自由基清除能力,表明其具有较强的抗氧化活性。  相似文献   

8.
考察了不同浓度的甲醇溶液对红毛丹果皮中多酚和黄酮物质的超声提取作用,并研究了不同甲醇提取液的还原能力、DPPH·和羟自由基清除能力。结果表明,60%和90%的甲醇溶液对红毛丹果皮多酚的提取率较高,90%的甲醇溶液对黄酮的提取率最高。30%、60%、90%甲醇和水溶液对DPPH·自由基清除能力的IC50值均在4μg/mL左右;对羟自由基清除能力的IC50值分别为46.80、34.06、36.69、80.30μg/mL。结果表明:不同甲醇提取液均具有较强的还原能力、DPPH·和羟自由基清除能力,其IC50值均为μg/mL级。一定浓度范围内,提取液抗氧化能力与其多酚的含量呈正相关性。90%和60%的甲醇提取液的抗氧化能力明显高于30%甲醇和水提取液。综合考虑对多酚的提取率、抗氧化能力以及提取成本等因素,可采用60%的甲醇作为提取液。   相似文献   

9.
沙棘果渣总黄酮提取工艺及抗氧化活性分析   总被引:3,自引:0,他引:3  
利用超声波辅助提取技术对河西走廊沙棘榨汁提油后的果渣下脚料总黄酮提取工艺进行优化,同时考察果渣黄酮提取液的还原力和清除羟自由基和超氧阴离子自由基的能力。通过单因素试验和L9(34)正交试验,得到影响黄酮得率的主要因素及其影响力大小为乙醇体积分数>提取时间>料液比;确定最佳提取条件为乙醇体积分数60%、提取时间40 min、料液比1∶50(g/mL);此条件下,河西走廊沙棘果渣中总黄酮提取率为2.55%,果皮渣中总黄酮提取率为0.651%,沙棘籽粕中总黄酮提取率为1.901%。当质量浓度大于0.151 4 mg/mL时,沙棘果渣黄酮提取液的还原力大于VC的还原力;沙棘果渣黄酮提取液对羟自由基和超氧阴离子自由基均有一定的清除作用,其对羟自由基的清除率为39.07%~42.01%,大于同等质量浓度VC的清除作用,而对超氧阴离子自由基的清除率为47.17%~60.38%,小于同等质量浓度VC的清除作用,说明沙棘果渣黄酮提取液对羟自由基有更强的清除能力。  相似文献   

10.
超声辅助乙醇提取麦冬叶中的总黄酮,考察了黄酮提取物对油脂的抗氧化活性及对羟基自由基的清除效果,并与常用的抗氧化剂作比较.结果表明,固定超声波功率250 W,用35 mL 80%的乙醇在70℃的水浴温度中浸泡30 min、超声波辅助提取20 min后,麦冬叶中总黄酮提取率为17.3 mg/g,该提取物对羟基自由基具有良好的清除效果,清除率随黄酮浓度的增大而增强,对油脂的抗氧化能力与黄酮提取物浓度成正相关关系,对植物油和动物油的抗氧化活性比常用的VC和柠檬酸强.  相似文献   

11.
李伟  程超  莫开菊 《食品科学》2017,38(19):137-142
比较凤头姜水溶和醇溶黄酮对超氧阴离子自由基、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、2’-联氨-双-3-乙基苯并噻唑啉-6-磺酸(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),ABTS)自由基的清除能力和总抗氧化能力(铁离子还原能力法),同时用VC和2,6-二叔丁基对甲酚(butylated hydroxytoluene,BHT)作对照。结果表明:在DPPH自由基清除能力测定中,水溶黄酮的抗氧化效果强于醇溶黄酮和BHT,但弱于VC,水溶和醇溶黄酮的半抑制浓度(half maximal inhibitory concentration,IC_(50))分别为585.75μg/m L和1 013.45μg/m L;在ABTS+·、超氧阴离子自由基清除能力和总抗氧化能力测定中,醇溶黄酮的抗氧化效果均强于水溶黄酮、VC和BHT,醇溶和水溶黄酮对ABTS+·的IC_(50)分别为21.90μg/m L和87.54μg/m L;在超氧阴离子自由基清除能力测定中,水溶和醇溶黄酮的IC_(50)分别为26.56μg/m L和22.29μg/m L;在铁离子还原能力测定中,水溶黄酮和醇溶黄酮的TEAC1 000分别为45.78μg/m L和36.42μg/m L。综合研究发现,凤头姜水溶黄酮和醇溶黄酮在不同抗氧化体系中的抗氧化效果存在差异。  相似文献   

12.
采用二苯代苦味肼基自由基(DPPH.)和铁离子还原/抗氧化能力(FRAP)测定法,研究了杜仲叶提取物,芦丁的抗氧化活性,并同VC进行了比较。结果表明杜仲叶提取物具较强的抗氧化能力,抗氧化能力与总黄酮含量密切相关,在一定浓度范围内成线性关系,对DPPH.有较强的清除作用,半抑制量EC50为0.022mg/mL,各样品清除DPPH.能力为:VC>芦丁>杜仲叶提取液;在FRAP模型中,对铁离子的还原能力强度顺序为VC>杜仲叶提取物>芦丁;杜仲叶提取物抗氧化速度小于VC大于芦丁。  相似文献   

13.
目的:优化柿子叶总黄酮的回流提取工艺,并评价其抗氧化活性。方法:以总黄酮提取量为指标,根据单因素实验的结果,通过响应面法与正交法分别得出最佳的回流提取总黄酮的条件,确定最优工艺条件,并在最优工艺条件下,以VC作为对照,通过柿子叶总黄酮对DPPH自由基、羟自由基等的清除作用来评价其抗氧化活性。结果:正交试验设计的最佳提取工艺为:乙醇浓度为40%,提取温度50 ℃,料液比为1:50 (g/mL)和提取时间为120 min,总黄酮提取量为18.11 mg/g。响应面法的最佳提取工艺为:乙醇浓度为50%,提取温度50 ℃,料液比为1:60 (g/mL)和提取时间为120 min,总黄酮提取量为18.21 mg/g。响应面法总黄酮提取量比正交试验法提高了0.55%。但从经济角度考虑,低乙醇浓度和低料液比能节约成本和能耗,而两者提取率几乎没有差别。因此,正交试验更适合柿叶总黄酮提取工艺。同时在正交试验法最佳工艺条件下,柿叶总黄酮对DPPH自由基、羟自由基和超氧阴离子的IC50分别为8.0、18.0、76.0 μg/mL,体外抗氧化试验结果表明,柿叶总黄酮对DPPH自由基、OH自由基均具有较强的清除能力,明显高于抗坏血酸,而对超氧阴离子自由基具有一定的清除能力,但清除能力低于同浓度的抗坏血酸。结论:正交试验提取柿叶总黄酮工艺合理可行,经济节约,可适用于工业生产。提取物具有较强的抗氧化活性。  相似文献   

14.
目的:研究银杏叶提取液结合异抗坏血酸钠对鲜切梨的保鲜效果。方法:以鲜切砀山梨为材料,探究总黄酮含量分别为0.25(处理1)、0.50(处理2)、0.75 mg/m L(处理3)的银杏叶提取液结合1%的异抗坏血酸钠(D-sodium ascorbate,D-VCNa)溶液对鲜切砀山梨在4℃条件下贮藏品质的影响。采用SPSS软件分析了贮藏期间鲜切梨的呼吸强度、质量损失率、色差、VC含量、硬度、可溶性固形物含量(soluble solid content,SSC)、过氧化物酶(peroxidase,POD)活力、相对电导率及pH值的变化等。结果:不同质量浓度黄酮的银杏叶提取液结合D-VCNa溶液都可以在不同程度上减缓鲜切梨的呼吸强度、质量损失率、色差的增加,减缓VC含量、硬度、SSC的下降速率,延迟褐变发生、POD活力高峰的出现时间,抑制果实pH值和相对电导率的上升。结论:银杏叶提取液结合D-VCNa对鲜切砀山梨的贮藏品质有一定的保鲜作用,其中以总黄酮含量为0.50 mg/m L银杏叶提取液结合1%的D-VCNa溶液处理的鲜切梨保鲜效果最好。  相似文献   

15.
研究了超临界流体萃取方法的工艺条件对小麦胚芽中黄酮类物质的提取率的影响,并探讨了麦胚黄酮粗提物对菜籽油过氧化的抑制作用及与其他物质的协同作用。实验结果表明,超临界流体萃取小麦胚芽中黄酮类物质的最佳工艺条件为萃取温度45℃、萃取压力30MPa、CO2流量25L/h、夹带剂无水乙醇的用量2mL/g。经紫外分光光度法分析,在此条件下,每千克小麦胚芽提取总黄酮类物质量达8.029g。麦胚黄酮粗提物具有很强的抗氧化活性,可有效延缓油脂脂质过氧化反应;其抗氧化作用优于常规醇提法的麦胚黄酮粗提物、TBHQ和槲皮素的抗氧化性能,与其添加量呈正相关性;VC和柠檬酸对麦胚黄酮粗提物有一定的协同作用,VC增效作用大于柠檬酸。  相似文献   

16.
柚皮中活性物质的抗氧化活性研究   总被引:2,自引:0,他引:2  
柚子皮中含有大量的黄酮类物质,研究柚皮中黄酮类化合物(槲皮素、芦丁、柚皮苷、橙皮苷)和香豆素类化合物(伞形花内酯)的抗氧化作用,对上述5种物质分别采用DPPH法、ABTs法、FRAP法、TBA法测定其抗氧化活性。结果表明槲皮素和芦丁具有较高的还原力,优于VC;清除DPPH自由基的能力均较高,IC50分别为1.36μg/mL和2.32μg/mL,效果优于BHT;清除ABTs+自由基的能力均较高,IC50分别为1.92μg/mL和0.86μg/mL,效果优于BHT;抗脂质过氧化的能力均较高,IC50分别为9.15μg/mL和5.84μg/mL,效果优于BHT。而伞形花内酯、柚皮苷和橙皮苷具有较低的还原力,比VC差;清除DPPH自由基的能力均较低,IC50分别为0.77 mg/mL、5.24 mg/mL和5.57mg/mL,效果比BHT差;清除ABTs+自由基的能力均较低,IC50分别为5.41 mg/mL、3.09 mg/mL和5.78 mg/mL,效果比BHT差;TBA试验表明伞形花内酯、柚皮苷和橙皮苷抗脂质过氧化效果较差。  相似文献   

17.
以桦褐孔菌为试材,采用乙醇热回流进行黄酮类化合物的提取,研究了单因素(料液比、提取温度、乙醇浓度以及提取时间)对桦褐孔菌中黄酮类化合物提取率的影响,通过正交实验对其提取工艺进行优化,利用FRAP、DPPH·、ABTS+·三种方法测定其抗氧化活性。结果表明:桦褐孔菌黄酮类化合物提取率影响因素为提取温度>乙醇浓度>提取时间>料液比,最佳工艺为提取温度75℃,乙醇浓度60%,提取时间2.0 h,料液比1:25 g/mL,在此工艺下提取桦褐孔菌黄酮类化合物含量为53.25 mg/mL,提取率为10.66%。桦褐孔菌黄酮类化合物浓度为200 μg/mL时,其总抗氧化能力相当于464.53 μmol/L FeSO4。对DPPH自由基清除率的EC50为36.44 μg/mL;对ABTS+自由基清除率的EC50为299.89 μg/mL。研究表明桦褐孔菌中黄酮类化合物对DPPH·和ABTS+·的清除率接近VC,具有较强的抗氧化活性,有潜力作为天然抗氧化剂推广应用。  相似文献   

18.
佛手黄酮提取工艺优化及其体外抗氧化活性   总被引:2,自引:0,他引:2  
本研究通过乙醇回流法提取佛手黄酮,在单因素实验的基础上,以得率为指标,通过响应面优化分析,优化佛手总黄酮的提取工艺,并对其体外抗氧化活性进行评价。结果表明:佛手黄酮最佳提取条件为:乙醇浓度73%,提取温度80℃,提取时间90 min,料液比1:31 g/mL。在此条件下黄酮得率为1.34%;佛手黄酮对DPPH和ABTS自由基均有一定的清除作用,且呈明显的剂量效应关系,其中DPPH自由基清除率的IC50为0.8 mg/mL,ABTS自由基清除率的IC50为0.07 mg/mL。ORAC(总抗氧化能力)为20.18 μmol TE/g。以上结果表明,佛手黄酮是一种良好的天然抗氧化剂。  相似文献   

19.
超声波辅助提取石榴根皮总黄酮及其抑制亚硝化反应活性   总被引:1,自引:0,他引:1  
探讨了超声波辅助提取石榴根皮总黄酮的工艺条件,以乙醇体积分数、料液比、超声功率和超声时间为影响因素,总黄酮得率为考察指标,在单因素实验基础上,采用Box-Behnken Design(BBD)实验设计优化最佳提取工艺条件,并测定石榴根皮总黄酮对亚硝酸盐的清除能力和对亚硝胺合成的抑制能力。结果表明:当乙醇体积分数63%,料液比1:22 g/mL,超声功率270 W和超声时间34 min时,石榴根皮总黄酮得率为2.81%,与模型预测值接近。石榴根皮总黄酮具有较强的清除亚硝酸盐能力和抑制亚硝胺合成能力,质量浓度为3.6 μg/mL时,对亚硝酸盐的最大清除率为64.5%,清除作用的IC50=2.408 μg/mL,对亚硝胺合成的最大阻断率为71.9%,阻断作用的IC50=2.345 μg/mL。在质量浓度0.12~3.6 μg/mL范围内,石榴根皮总黄酮与对亚硝酸盐清除作用和抑制亚硝酸胺合成作用之间均呈一定的正相关关系。该方法可为石榴根皮总黄酮的提取及应用提供一定的科学依据。  相似文献   

20.
石浩  王仁才  吴小燕  刘琼 《食品科学》2018,39(13):229-234
研究软枣猕猴桃中黄酮类化合物对过氧化氢(H2O2)损伤人永生化表皮细胞(HaCaT细胞)的保护作用。 以湖南省浏阳市大围山软枣猕猴桃为实验材料,以体外培养的HaCaT细胞为实验对象。实验分为空白对照组、H2O2 模型组、阳性对照组(VC组)和黄酮处理组(软枣猕猴桃黄酮0.1~1.0 mg/mL预处理),以细胞内超氧化物歧化酶 (superoxide dismutase,SOD)活力、活性氧簇(reactive oxygen species,ROS)水平为综合评价指标,并以VC作 为阳性对照评价其抗氧化活性。实验结果表明:当H2O2浓度为30 μmol/L时,细胞相对存活率为40%左右,较好地 诱导了HaCaT细胞氧化损伤模型。当加入黄酮类化合物对细胞进行预保护后,质量浓度0.3、0.6 mg/mL的黄酮处理 组细胞相对存活率为60%左右,较模型组均提高了20%左右。0.3 mg/mL黄酮处理组细胞内SOD活力(6.33 U/mg) 较模型组升高了约1 倍,且存在明显差异(P<0.05);ROS水平显著下降,与模型组(677.80)相比下降了13%左 右。说明软枣猕猴桃中黄酮类化合物对H2O2造成的氧化损伤具有一定的预保护作用,可进一步将其开发成相应的天 然抗氧化剂产品投入市场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号