首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
焊接钢圆柱薄壳广泛应用于钢筒仓和钢油罐结构中,屈曲通常是该结构的设计控制条件,圆柱薄壳的屈曲在大多数荷载工况下对焊接几何缺陷十分敏感.现有研究标明,焊接残余应力可少量提高均匀轴压圆柱壳的稳定承载力,但对于局部轴压荷载下圆柱薄壳中残余应力的效应,相关的研究很少.采用施加收缩应变法,建立了分别考虑焊接几何缺陷以及考虑或不考虑焊接残余应力焊接圆柱薄壳的数值分析模型,研究了含有周向焊缝、竖向焊缝以及砌砖式焊缝(patterned welds)的局部轴压焊接圆柱壳屈曲行为,通过比较考虑/不考虑残余应力圆柱薄壳的计算结果,得到残余应力对局部轴压圆柱壳承载力的影响.  相似文献   

2.
M. K. Chryssanthopoulos 《Thin》1998,30(1-4):135-157
For many years, a significant amount of research has been directed towards experimental modelling of thin-walled plates and shells, as well as towards the development of analytical and numerical methods to improve their design against buckling. This paper presents methodologies for probabilistic buckling analysis and reliability assessment of such structural components and examines the link between probabilistic and deterministic studies. In particular, the effect of manufacturing variabilities, such as initial geometric imperfections and residual stresses, on elastoplastic buckling response is investigated through parametric reliability studies of plate panels and cylinders under axial compression.  相似文献   

3.
Buckling and postbuckling behaviour of perfect and imperfect cylindrical shells of finite length subject to combined loading of external pressure and axial compression are considered. Based on the boundary layer theory which includes the edge effect in the buckling of shells, a theoretical analysis for the buckling and postbuckling of circular cylindrical shells under combined loading is presented using a singular perturbation technique. Some interaction curves for perfect and imperfect cylindrical shells are given. The analytical results obtained are compared with some experimental data in detail, and it is shown that both agree well. The effects of initial imperfection on the interactive buckling load and postbuckling behaviour of cylindrical shells have also been discussed.  相似文献   

4.
Xiaoqing Zhang  Qiang Han 《Thin》2007,45(12):1035-1043
Buckling and postbuckling behaviors of imperfect cylindrical shell subjected to torsion are investigated. The governing equations are based on the Karman–Donnell-type nonlinear differential equations. A boundary layer theory of shell buckling is applied to obtain the analytic solutions that meet the boundary conditions strictly. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. Numerical results reveal that the current theory gives quite good estimates of the postbuckling paths of cylindrical shells. The effects of the geometric parameters on the buckling and postbuckling behaviors of the cylindrical shells are analyzed. It is confirmed that the postbuckling equilibrium paths of cylindrical shells subjected to torsion are unstable and the relatively shorter shells have higher postbuckling equilibrium paths. Finally, the effects of the initial imperfections on the buckling and postbuckling behaviors of the cylindrical shells are clarified. The illustrated results of the imperfect shells with different initial transverse deflections show that extremely small imperfections do indeed reduce the buckling loads and make the postbuckling equilibrium paths be lower. The buckling and postbuckling of cylindrical shells under torsion exhibit obvious imperfect sensitivity. Furthermore, the effects become greater following with the larger imperfections.  相似文献   

5.
Local buckling of steel plates reduces the ultimate loads of concrete-filled thin-walled steel box columns under axial compression. The effects of local buckling have not been considered in advanced analysis methods that lead to the overestimates of the ultimate loads of composite columns and frames. This paper presents a nonlinear fiber element analysis method for predicting the ultimate strengths and behavior of short concrete-filled thin-walled steel box columns with local buckling effects. The fiber element method considers nonlinear constitutive models for confined concrete and structural steel. Effective width formulas for steel plates with geometric imperfections and residual stresses are incorporated in the fiber element analysis program to account for local buckling effects. The progressive local and post-local buckling is simulated by gradually redistributing the normal stresses within the steel plates. Two performance indices are proposed for evaluating the section and ductility performance of concrete-filled steel box columns. The computational technique developed is used to investigate the effects of the width-to-thickness ratios and concrete compressive strengths on the ultimate strength and ductility of concrete-filled steel box columns. It is demonstrated that the nonlinear fiber element method developed predicts well the ultimate loads and behavior of concrete-filled thin-walled steel box columns and can be implemented in advanced analysis programs for the nonlinear analysis of composite frames.  相似文献   

6.
X. Lin  J. G. Teng   《Thin》2003,41(10):0408011
Buckling of cylindrical shells subject to axial compression is acutely sensitive to the form and amplitude of geometric imperfections present in the structure. As a result, many attempts have been made to measure geometric imperfections in cylindrical shells both in laboratory specimens and less frequently in full-scale structures. The imperfections are generally interpreted using the well-known method of Fourier decomposition, so that the different components of imperfections can be more easily related to structural features such as positions of welds and their effects on buckling strength better understood. A common situation in imperfection measurements on full-scale shell structures is that some parts of the structure are not accessible, due to the presence of accessories such as service ladders and pipes. As a result, a measurement grid with non-uniform intervals is generally employed in imperfection surveys on full-scale structures. This paper first shows that when results from such surveys are interpreted using the traditional Fourier decomposition method, the resulting Fourier series cannot provide an accurate representation of the discrete measurement data due to the non-uniform distribution of sampling points. The paper then presents an iterative Fourier decomposition method which overcomes this problem. The theoretical background of the proposed method is detailed, followed by a numerical demonstration of the effectiveness of the method.  相似文献   

7.
A new approach is extended to investigate the buckling and postbuckling behaviour of perfect and imperfect, stringer and ring stiffened cylindrical shells of finite length subject to combined loading of external pressure and axial compression. The formulations are based on a boundary layer theory which includes the edge effect in the postbuckling analysis of a thin shell. The analysis uses a singular perturbation technique to determine the buckling loads and the postbuckling equilibrium paths. Some interaction curves for perfect and imperfect stiffened cylindrical shells are given and compared well with experimental data. The effects of initial imperfection on the interactive buckling load and postbuckling behaviour of stiffened cylindrical shells have also been discussed.  相似文献   

8.
A. Vaziri  H.E. Estekanchi 《Thin》2006,44(2):141-151
Linear eigenvalue analysis of cracked cylindrical shells under combined internal pressure and axial compression is carried out to study the effect of crack type, size and orientation on the buckling behavior of cylindrical thin shells. Two types of crack are considered; through crack and thumbnail crack. Our calculations indicate that depending on the crack type, length, orientation and the internal pressure, local buckling may precede the global buckling of the cylindrical shell. The internal pressure, in general, increases the buckling load associated with the global buckling mode of the cylindrical shells. In contrast, the effect of internal pressure on buckling loads associated with the local buckling modes of the cylindrical shell depends mainly on the crack orientation. For cylindrical shells with relatively long axial crack, buckling loads associated with local buckling modes of the cylindrical shell reduce drastically on increasing the shell internal pressure. In contrast, the internal pressure has the stabilizing effect against the local buckling for circumferentially cracked cylindrical shells. A critical crack length for each crack orientation and loading condition is defined as the shortest crack causing the local buckling to precede the global buckling of the cylindrical shell. Some insight into the effect of internal pressure on this critical crack length is provided.  相似文献   

9.
Effects of imperfections of the buckling response of composite shells   总被引:5,自引:1,他引:5  
The results of an experimental and analytical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different shell-wall laminates two different shell-radius-to-thickness ratios. The shell-wall laminates include four different orthotropic laminates and two different quasi-isotropic laminates. The shell-radius-to-thickness ratios includes shell-radius-to-thickness ratios equal to 100 and 200. The numerical results include the effects of traditional and nontraditional initial imperfections and selected shell parameter uncertainties. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The nontraditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. The cylinder parameter uncertainties considered include uncertainties in geometric imperfection measurements, lamina fiber volume fraction, fiber and matrix properties, boundary conditions, and applied end load distribution. Results that include the effects of these traditional and nontraditional imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure of the shells are presented. The analysis procedure includes a nonlinear static analysis that predicts the stable response characteristics of the shells, and a nonlinear transient analysis that predicts the unstable response characteristics. In addition, a common failure analysis is used to predict material failures in the shells.  相似文献   

10.
In spite of numerous papers in the literature on the buckling behavior of cylindrical shell structures, the effect of local large imperfections caused by physical contacts has not been exhaustively examined yet. To this end, this paper reports on an experimental program on the buckling and post-buckling response of thin cylindrical shells with local dent imperfections under uniform external pressure. The results of this study can be used in practical structures with similar geometric features, i.e. D/t ratio.  相似文献   

11.
In the bridge structures, stiffened plates are usually designed as rigidly stiffened when the orthotropic steel box girder is used as the main load-bearing structure. Therefore, the buckling mode of stiffened plates is plate buckling which occurs in subpanel supported by stiffeners. The orthotropic steel box girder is used as the main girder for Egongyan Rail Special Bridge, which is a self-anchored suspension bridge. Plates of the steel girder are rigidly stiffened with unequal spacing open ribs, and the most slender stiffened plate is the mid web stiffened with Tee ribs. In order to ensure the safety of the bridge, the buckling behavior of the web and orthotropic steel box girder under axial compression, including ultimate strength, post-buckling behavior and failure modes, should be clearly investigated by experimental and numerical methods. The design, loading and testing methods of the 1:4 scale model of the orthotropic steel box girder are introduced in detail firstly. The orthotropic steel box girder and the stiffened web finite element (FE) models are validated by the test results, and the effects of residual stress and the magnitude of geometric imperfections are discussed roughly. Based on the validated web FE model, a detailed parametric study is performed to systematically investigate the effects of residual stress and geometric imperfections on buckling behavior of the web. The effect of shapes of geometric imperfections discussed is highlighted. Through tracing stress states, the failure modes of stiffened plate are in agreement with the experimental phenomenon to some extent. Results show that shapes of geometric imperfections have significantly influenced post-buckling behavior and failure modes of the web, but slightly affected the ultimate strength. It is advised that residual stress and geometric imperfections should be controlled to make full use of excellent performance of steel materials.  相似文献   

12.
The lateral postbuckling response of thin-walled structures such as bars and frames with members having steel rolled shapes as well as circular cylindrical shells under axial compression is thoroughly reconsidered. More specifically via a simple and very efficient technique it is found that beams with rolled shapes (symmetric or non symmetric) under uniform bending and axial compression exhibit a stable lateral-torsional secondary path with limited margins of postbuckling strength. New findings for the static and dynamic stability of frames with crooked steel members-due to the presence of residual stresses-are also reported. It is comprehensively established that the coupling effect due to initial crookedness and loading eccentricity may have a beneficial effect on the load-carrying capacity of the frames. Moreover, simple mechanical models are proposed for simulating the buckling mechanism of axially compressed circular cylindrical shells. Very recently Bodner and Rubin proposed an 1-DOF mechanical model whose buckling parameters correlated to those of the shells by using an empirical formula based on experimentally observed shell buckling loads. In the present analysis a new 2-DOF model for the static and dynamic buckling of axially compressed circular cylindrical shells, which can include mode coupling, is presented.  相似文献   

13.
Steel angle sections have been widely accepted with the development of steel structures, and such members made by high strength steel (HSS) sections are also increasingly used in buildings and bridges, and especially in transmission towers and long span trusses. Compared to normal strength steels, HSS exhibits different mechanical properties, which can cause different local buckling behavior. A finite element analysis (FEA) was performed in this paper to investigate the local buckling of steel equal angle members with different strengths under axial compression, where the residual stresses and the initial geometric imperfections of specimens were accurately described. Through this work, the relationship of the ultimate local buckling stress of steel equal angle members under axial compression as a function of steel strength and width-to-thickness ratio was established. By comparing the FEA results with the international design specifications (ANSI/AISC 360-10 and Eurocode 3), a modified design formula was developed and corresponding design suggestions were proposed, to take into account the effects of steel strength.  相似文献   

14.
对结构进行缺陷稳定分析的主要方法是一致缺陷模态法和随机缺陷模态法,一致缺陷模态法对薄壁圆柱壳结构进行非线性分析得到的极限承载力与其实际承载能力有一定差距,随机缺陷模态法则工作量很大。基于圆柱薄壳轴压失稳呈现出多模态屈曲的特点,本文提出改进一致缺陷模态法,通过对圆柱壳分别施加不同屈曲模态找到最不利缺陷分布形式。文中通过有限元法验证了改进一致缺陷模态法的可靠性,同时指出按照某一类高阶屈曲模态施加初始缺陷能得到薄壳的最不利极限承载力。  相似文献   

15.
A linear analysis method is offered to predict the theoretical elastoplastic buckling of stringer stiffened cylindrical shells subjected to longitudinal loading. Welding residual stresses are taken into account in the calculation, but effects of geometrical imperfections and pre-buckling displacements are ignored.The examples analysed show a good correlation between the analytical results and those obtained experimentally with stocky models of moderate geometrical imperfections.  相似文献   

16.
Chiara Bisagni   《Thin》2005,43(3):499-514
The paper deals with dynamic buckling due to impulsive loading of thin-walled carbon fiber reinforced plastics (CFRP) shell structures under axial compression. The approach adopted is based on the equations of motion, which are numerically solved using a finite element code (ABAQUS/Explicit) and using numerical models validated by experimental static buckling tests. To study the influence of the load duration, the time history of impulsive loading is varied and the corresponding dynamic buckling loads are related to the quasi-static buckling loads. To analyse the sensitivity to geometric imperfections, the initial geometric imperfections, measured experimentally on the internal surface of real shells, are introduced in the numerical models. It is shown numerically that the initial geometric imperfections as well as the duration of the loading period have a great influence on the dynamic buckling of the shells. For short time duration, the dynamic buckling loads are larger than the static ones. By increasing the load duration, the dynamic buckling loads decrease quickly and get significantly smaller than the static loads. Since the common practice is to assume that dynamic bucking loads are higher than the static ones, which means that static design is safe, careful design is recommended. Indeed, taking the static buckling load as the design point for dynamic problems might be misleading.  相似文献   

17.
Stochastic imperfection modelling in shell buckling studies   总被引:2,自引:0,他引:2  
One possible avenue that may improve design against buckling is to recognise and account for the random nature of initial geometric imperfections introduced by manufacturing. This paper presents the application of a probabilistic methodology to the design and analysis of cylindrical shells under axial compression. Results from two cases are presented and compared: the first involves stringer-stiffened steel cylinders failing elastoplastically, whereas the second examines unstiffened composite cylinders buckling elastically. In both cases, the method is underpinned by statistical analysis of imperfections measured on nominally identical specimens. Nonlinear FE analysis is used for strength assessment and the results of the statistical analysis are introduced in the imperfection modelling. It is demonstrated that the method has advantages over code design based on ‘lower bound’ curves, in terms of the calculated buckling loads but also in offering a systematic and rational way by which randomness in imperfections can be assessed.  相似文献   

18.
Initial geometric imperfections have a great effect on the buckling strength of thin-walled cylindrical shells under axial compression, and the circumferential weld-induced imperfection is usually the most deleterious imperfection form. Two axisymmetric imperfection forms proposed by Rotter and Teng have widely been employed in the buckling analysis of cylindrical shells. However, the applicability of the two forms for tapered-wall cylinders needs further study, since they are derived from the elastic bending theory for long thin-walled cylinders with a constant wall thickness. This paper presents a modified form of circumferential imperfection for tapered-wall cylinders. Finite element analyses are carried out by employing the trapezoidal strain field approach to model the welding process, and the obtained circumferential depression shapes are used to evaluate the availability of the modified imperfection form. It is shown that the modified imperfection form is reasonable for any wall thickness ratio between two adjacent strakes, and the most suitable shape function, which is very close to the FE results, can be obtained by giving suitable values of the roundness in the modified form.  相似文献   

19.
Most papers dealing with the analysis of the buckling behaviour of orthotropic circular cylindrical shells provide solutions which are complex in nature and difficult to use. In this paper the theory has been developed to the point that relatively simple solutions of a general nature have been formulated. Based on Flugge's linear theory for isotropic cylindrical shells, a general buckling solution under combined axial compression and external pressure was derived. For moderate-length orthotropic cylindrical shells loaded by either external pressure or axial compression, buckling loads are formulated in a simple form.  相似文献   

20.
J. Michael Rotter 《Stahlbau》2006,75(9):742-747
Metal cylindrical bins, silos and tanks are thin shell structures subject to internal pressure from stored materials together with axial compression from the frictional drag of stored materials on the walls and horizontal loads. The governing failure mode is frequently buckling under axial compression. The internal pressure exerted by the stored fluids or solids can significantly enhance the buckling strength, but high internal pressures lead to severe local bending near the base. Local yielding then precipitates an early elastic‐plastic buckling failure. This failure mode, commonly known as “elephant's foot buckling”, has received relatively little attention to date and until recently was often ignored in tank and silo design. This problem is an unusual buckling condition, because it involves very high tensile stresses in one direction, coupled with rather small compressive stresses in the orthogonal direction. Thus, although it is a buckling failure involving considerable plasticity, it occurs at low buckling stresses and under conditions that appear to be classically “slender”. The normal concatenation of “slender” with “elastic” in buckling formulations does not apply at all here. This paper describes alternative approaches to the formulation of design rules for the elastic‐plastic instability and collapse of axially‐loaded internally‐pressurised thin cylindrical shells adjacent to the base support. The differences between the different approaches arise from different conceptual models for the manner in which an elastic‐plastic slender structure instability should be treated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号