首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grinding is an important means of realizing precision and ultra-precision machining. Vibration caused by an unbalanced grinding wheel in grinding process has a significant impact on the quality of workpiece surface. However, the effect of wheel surface topography and/or the relative vibration between grinding wheel and workpiece are not considered in most researches. Taking the relative vibration between grinding wheel and workpiece into account, alongside the abrasive grain trajectory equation, a new analysis and simulation model for surface topography of the grinding process is established. The model for the topography of the grinding wheel surface is first studied, and subsequently, a new simulation model for surface topography of the grinding process is proposed. Case studies are performed at the end, and the influence of grinding wheel vibration amplitude, wheel grit number, as well as grinding parameters on the surface waviness and roughness is discussed. The simulation results could be used to optimize the actual grinding process to improve the ground surface quality or predict the surface topography by given grinding parameters.  相似文献   

2.
针对在加工大导程滚珠螺母时,可能会出现砂轮磨杆与螺母端面发生干涉的问题,从滚珠螺母磨削加工的基本方法出发,依据砂轮回转面与被加工螺母内滚道面包络的接触线是一条空间曲线的原理,建立任意安装角度下砂轮回转曲面的计算模型,并将此计算模型用于解决大导程滚珠螺母加工干涉问题.提出在保证加工时不发生干涉的前提下,选取砂轮最佳安装角和中心间距参数的方法以及在此参数下砂轮廓形的拟合优化方法.该方法计算简单、可以随时根据安装角和中心间距参数值对砂轮廓形进行修整,以保证磨削精度.以某型号大导程滚珠螺母为例,完成在保证不发生干涉的情况下相关工艺参数的选择以及砂轮廓形的优化设计,对结果进行误差分析,验证了方法的有效性.  相似文献   

3.
ZK蜗杆磨削中砂轮廓形的智能化修整   总被引:1,自引:0,他引:1  
韩云鹏  孟剑锋 《中国机械工程》2003,14(16):1377-1380
提出了包含多个砂轮修整参数的锥面砂轮数学模型,推导出了基于该砂轮模型的ZK蜗杆齿面方程。在此基础上,讨论了数学模型中修整参数对砂轮廓形的影响规律,提出了ZK蜗杆磨削过程中砂轮的智能化修整原理,实现了根据砂轮半径的变化对砂轮廓形进行高精度、实时地自动修整。  相似文献   

4.
高速铁路钢轨打磨技术的发展现状与展望   总被引:1,自引:0,他引:1  
钢轨在服役过程中不可避免会产生波磨、裂纹、剥离、肥边等各种损伤和缺陷,严重影响其使用寿命和列车运行安全。钢轨打磨是当前国内外公认的去除表面损伤和缺陷、抑制滚动接触疲劳、改善轮轨匹配关系、延长钢轨使用寿命、提高列车运行平稳性、安全性以及乘客舒适度的有效和通用手段。概述预打磨、预防性打磨和修复性打磨三种钢轨打磨策略,然后将适用于高速铁路的钢轨打磨技术系统性的分为砂轮端面打磨技术、砂轮周面打磨技术、铣磨复合打磨技术、砂轮高速打磨技术和砂带打磨技术,并对每种打磨技术的原理、国内外相关研究及其对应的典型打磨装备发展现状进行详细评述,最后指出高速铁路钢轨打磨装备总体上呈现智能化、高效化、多样化和绿色化发展趋势,打磨技术将随着先进制造理念的不断渗透而发展进步,同时须研发我国自主化高端钢轨打磨装备,以全面提升我国高速铁路钢轨维护水平。  相似文献   

5.
综述了钢轨打磨过程中材料的去除机理,主要包括钢轨打磨时材料的去除模型、钢轨打磨温度场,并在此基础上介绍了不同打磨参数、打磨磨石与打磨工况下钢轨材料的去除行为,提出了钢轨打磨效率和打磨质量相互作用机制,总结了钢轨打磨对轮轨滚动接触疲劳的影响因素。提出了未来重点研究方向建议:开展针对磨石特性(如磨料成分、结合剂、粒度、硬度、气孔等)的研究,研发适合我国钢轨的打磨磨石,以提高打磨作业效率和质量,降低打磨作业成本;进一步开展其他特殊工况下的钢轨打磨试验;将钢轨打磨与其他铁路维护作业相结合,在保证轮轨接触状态良好的条件下延长钢轨使用寿命。  相似文献   

6.
In the fabrication and maintenance of hydroelectric turbines, the reconstruction by grinding of certain high-curvature surfaces such as junctions has not yet been robotized and must now be done manually. The problem is related to the very fast grinding wheel wear and the difficulty in controlling the position and orientation of the robot's grinder to adjust to changes in wheel shape. If the grinding wheel orientation is kept constant with respect to the workpiece, wheel-workpiece conformity increases, specific energy increases, the material removal rate drops and glazing of the wheel may occur. This article presents a method for controlling simultaneously the profile of both the workpiece and the grinding wheel. The orientation of the wheel is oscillated to maintain a constant wheel profile throughout its life and thus achieve better control in material removal. Research results provide the basis for robotic grinding tool profiling.  相似文献   

7.
Metal-bonded superabrasive diamond grinding wheels have superior qualities such as high bond strength, high stability and high grindability. The major problems encountered are wheel loading and glazing, which impedes the effectiveness of the grinding wheel. Electrolytic in-process dressing (ELID) is an effective method to dress the grinding wheel during grinding. The wear mechanism of metal-bonded grinding wheels dressed using ELID is different form the conventional grinding methods because the bond strength of the wheel-working surface is reduced by electrolysis. The reduction of bond strength reduces the grit-depth-of-cut and hence the surface finish is improved. The oxide layer formed on the surface of the grinding wheel experiences macrofracture at the end of wheel life while machining hard and brittle workpieces. When the wheel wear is dominated by macrofracture, the wheel-working surface is free from loaded chips and worn diamond grits. When the oxide layer is removed from the wheel surface, the electrical conductivity of the grinding wheel increases, and that stimulates electrolytic dressing. The conditions applied to the pulse current influence the amount of layer oxidizing from the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear. Shorter pulse ‘on’ time can be selected for a courser grit size wheel since that type of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired for finer grit size wheels to obtain stable and ultraprecision surface finish.  相似文献   

8.
Carbon fiber reinforced plastic (CFRP) is widely used in the aerospace industry due to its high specific strength and elastic modulus. When cutting CFRP with tools such as an endmill, problems such as severe tool wear, delamination, and burrs in the CFRP can arise. Grinding, on the other hand, is supposed to improve the quality of the machined surface and tool life, according to its machining property. However, the amount of heat generated during grinding is still a considerable problem in that it is significantly higher than the temperature with conventional cutting. In order to achieve the high performance machining of CFRP, this study aims to show the effect of supplying an internal coolant through the grinding wheel on the surface of the CFRP. Face grinding of CFRP using a cup-type grinding wheel was conducted. Vitrified aluminum oxide grinding wheel was used. Three different coolant supply systems were tested: dry grinding, coolant supply using an external nozzle, and coolant supplied internally through the grinding wheel. The results showed that matrix resin loading on grinding wheel was significantly reduced by the internal coolant supply. Hence, the grains of the grinding wheel were able to cut the fibers sharply, without delamination or burr formation on the ground surface, and surface roughness was reduced compared to the machined surface with endmill. The internal coolant supplied through the grinding wheel showed greater cooling ability, and markedly reduced grinding temperature, keeping it lower than the glass-transition temperature of the matrix epoxy resin of CFRP. Because the coolant was supplied to the grinding point directly through pores in the grinding wheel, chips were eliminated from the pores, and coolant supply was sufficient to cool the ground surface.  相似文献   

9.
A degree of sharpness in wheel grains affects the surface roughness and dimensional accuracy in the grinding process. If a wheel with dull grains is used, the grinding force is increased and the surface roughness is deteriorated. In ovder to produce a precision component economically, the magnitude of the wear amount in the grinding wheel has to be limited. In this study, experimental evaluation of a wheel life varying with the grinding ratio and static grinding force was conducted. The grinding ratio and grinding force were measured to seek the grinding performance of the WA wheel. The relationship between the grinding ratio and static grinding force was presented.  相似文献   

10.
新型点磨削砂轮磨削力模型及试验研究   总被引:3,自引:0,他引:3  
点磨削砂轮轴线与工件轴线之间存在倾斜角α,磨削过程中磨粒的运动轨迹改变,点磨削力及理论模型也随之变化。以传统磨削力理论为基础,利用点磨削模型的转换,建立点磨削力理论模型,通过试验验证理论模型的正确性。试验结果表明:模型的计算值与试验结果的趋势一致,数值相近。点磨削力模型为实际加工提供一种辅助和验证方法。同时提出一种带有粗磨区倾角θ的新型点磨削砂轮,在点磨削力模型的基础上,做了进一步研究,建立新型砂轮的磨削力分配模型。通过点磨削试验对该模型进行试验验证,用不同θ角的砂轮在一系列磨削参数条件下磨削阶梯轴。试验表明:模型分析结果与试验结果一致,在相同磨削参数下,带有粗磨区倾角θ的新型点磨削砂轮的磨削力要小于θ=0°的传统点磨削砂轮磨削力,磨削力随着θ角的增大而减小。此外,还可以得出磨削参数倾斜角α、磨削深度ap和砂轮速度vs对点磨削力的影响规律。  相似文献   

11.
无心外圆磨削广泛应用各类棒料工件的精加工,其在加工过程中会产生巨大的能量消耗,为提高无心外圆磨削过程的能量效率,主要对磨削过程的工艺参数进行了优化。在考虑磨削功率、表面粗糙度及磨削用量约束的基础上,将砂轮线速度、导轮线速度、导轮架进给速度选为优化变量,以最小能量消耗为优化目标来建立数学模型;提出了蜜蜂进化型遗传算法并结合MATLAB软件对模型进行优化求解,将结果与传统遗传算法进行对比实验,验证了蜜蜂进化型遗传算法的有效性。  相似文献   

12.
针对软固结磨粒气压砂轮在加工异形曲面时,工件所受的切削力以及接触区内磨粒速度因工件曲率发生变化,导致工件不同曲率处材料去除量不均匀的问题, 基于修正的Rowe剪胀理论建立砂轮切削力模型,提出了非一致曲率表面下修正的气压砂轮材料去除模型。通过EDEM软件建立了软固结磨粒气压砂轮模型,分析了砂轮下压量为1.5 mm时工件曲率对接触力以及接触区内磨粒速度的影响。搭建气压砂轮加工试验平台,通过光整加工试验验证修正的材料去除模型。研究结果表明:修正的材料去除模型平均绝对值误差为0.095,而原始的材料去除模型平均绝对值误差为0.291,说明修正的材料去除模型可以用于气压砂轮抛光过程中的定量分析,且工件加工表面划痕明显减少。  相似文献   

13.
在回转曲面的磨削中,采取小直径平行砂轮代替圆弧砂轮的方法,保证曲面磨削点的法向始终与砂轮表面垂直,实现砂轮法向跟踪磨削.根据磨削轨迹,建立了磨削表面残留高度模型,分析了砂轮半径、工件曲率和进给速度对残留高度的影响.并进行磨削试验,得出了砂轮半径、工件曲率及进给速度对表面粗糙度的影响曲线,其变化规律与残留高度的变化规律基本一致,证明在回转曲面磨削中,可以通过控制残留高度的大小来改善磨削表面粗糙度.  相似文献   

14.
Increasing competition and short product life cycles make it necessary to optimize and evaluate the outcome of manufacturing processes. In tool grinding, models for the final workpiece geometry and cutting forces are of particular interest. To establish a valid general grinding model, we investigated the cutting process and the influence of local grinding wheel engagements on the material removal. We consequently developed models of material removal and grinding wheel topography, which capture the main correlations in grinding. In combination, temporal cutting forces and final workpiece geometry are predictable and are in excellent agreement with experimental data. The introduced models are valid for grinding in general, since they are solely based on the geometry and process parameters, and hence are applicable for manufacturing process optimization.  相似文献   

15.
切入磨削与纵向磨削的磨削力分析与比较   总被引:1,自引:0,他引:1  
研究了同时包含切入磨削和纵向磨削的复杂外圆磨削过程。根据纵向磨削过程的特点,将砂轮等效成若干个小砂轮,在传统阶梯模型的基础上构建了砂轮磨损的抛物线模型。推导了基于两种模型的纵向磨削切向分力和切入磨削切向分力的比较公式,两切向分力的比值反映了切入磨削和纵向磨削转换时切向分力的变化情况,它主要与磨削系数、砂轮宽度和纵向进给速度有关。采用砂轮主轴功率信号分析磨削切向分力,通过实验验证了抛物线模型更符合实际情况的结论。研究结果为采用磨削力信号和功率信号研究复杂磨削过程的监控提供了参考依据。  相似文献   

16.
The topography of grinding wheel has a remarkable effect on grinding process. In this paper, the topographies of two mill grinding wheels with different grain sizes were measured by using an Olympus confocal scanning laser microscope. Kolmogorov–Smirnov normality tests were carried out to obtain distribution characteristics of abrasive grains. The test results indicate that the surface of grind wheel is of non-Gaussian nature. Consequently, a non-Gaussian statistical model was proposed to simulate the mill grinding wheel topography. Simultaneously, some parameters of “Birmingham 14” were introduced to assess the grinding wheel surface quantitatively. Simulated profile of the grinding wheel is found to correspond well in appearance with that of the actual grinding wheel.  相似文献   

17.
电镀小直径CBN环形砂轮端面磨削沟槽底面   总被引:2,自引:0,他引:2  
在对小直径环形砂轮端面磨削沟槽底面过程中的磨粒切屑厚度进行解析的基础上,设计了电镀小直径CBN环形砂轮端部结构尺寸,作为提高砂轮寿命的措施,实验分析磨削冷却液供给方式和倾斜砂轮轴磨削法的效果。  相似文献   

18.
首次建立了包含砂轮修整参数的ZK蜗杆数学模型,分析了当砂轮半径发生变化时,m、z_1、d_1对蜗杆齿形误差的影响规律,给出了计算ZK蜗杆齿形误差的经验公式。提出了ZK蜗杆磨削过程中砂轮的智能化修整原理,实现了根据砂轮半径的变化对砂轮廓形的自动修整。  相似文献   

19.
Modeling and simulation of useful fluid flow rate in grinding   总被引:1,自引:0,他引:1  
This research established a mathematical model of the useful grinding fluid flow rate of a rough grinding wheel. The abrasive distribution matrix of the grinding wheel surface topography was programmed on the MATLAB software platform to obtain the grinding wheel porosity φ at different particle sizes. The grinding fluid flow field was simulated and studied by using the volume of fluid multiphase flow model of FLUENT. Results showed that given a certain circular velocity of the grinding wheel, a larger grinding fluid jet velocity resulted in greater useful grinding fluid flow. When the grinding fluid jet velocity was set, the useful grinding fluid flow increased with increasing circular velocity of the grinding wheel. With the increasing velocity of the grinding wheel, as affected by the airbond layer, the increasing rate of the useful grinding fluid flow decreased, and the flow likewise showed a tendency to decrease. With a certain grinding fluid jet velocity, the useful flow rate of the grinding fluid was positively proportional to the useful flow. When the grinding fluid jet velocity changed and grinding wheel velocity was set, the grinding fluid jet velocity increased as the useful flow rate decreased. When the grinding fluid jet velocity was equivalent to the grinding wheel velocity, the useful flow rate of the grinding fluid was positively proportional to the useful flow. When the minimum clearance of grinding zone h increased, the useful grinding fluid flow and useful flow rate likewise increased. When the grinding fluid jet velocity was equivalent to the grinding wheel velocity, a larger nozzle gap width increased the flow supply for the grinding fluid and the useful grinding fluid flow. However, the increase in the useful flow rate of the grinding fluid was significantly smaller than that of the nozzle flow. This condition decreased the useful flow rate of the grinding fluid.  相似文献   

20.
与普通磨料砂轮相比,采用金刚石车削法修整超硬磨料砂轮,修整力大、工具磨损快、修整时间长、效率低、精度低及质量差,致使超硬磨料砂轮的优异性能得不到充分发挥,砂轮修整已经成为制约超硬磨料砂轮工程应用的主要瓶颈.在超硬磨料砂轮修整研究方面,科研成果众多,技术各有特点,然而工程应用有限.点轮修整是集金刚石车削修整、金刚石滚轮磨...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号