首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 75 毫秒
1.
采用自适应遗传算法优化SVM相关参数,建立了IAGA-SVM滚动轴承故障诊断模型。通过实验验证了该模型的精确性和有效性。  相似文献   

2.
基于支持向量机的故障模式识别研究   总被引:1,自引:1,他引:1  
支持向量机为因缺乏大量故障样本受到制约的智能诊断提供了一个全新的途径.从振动信号中提取特征向量作为支持向量机的输入,对滚动轴承故障模式进行识别.实验表明,在含噪声条件下支持向量机对滚动轴承故障模式仍然具有优秀的分类性能.  相似文献   

3.
本文利用MEM谱分析、残差偏移距离方法,探讨了矿用齿轮,铀承故障的综合诊断,进一步研究矿山大型回转机械的故障诊断、故障监测、故障预测及控制打下基础。  相似文献   

4.
支持向量机学习算法针对小样本情况表现出优良的性能,能够在有限特征信息情况下,最大限度地发掘数据中隐含的分类知识,使其能够更适用于故障诊断领域。研究决策有向无环图多类分类支持向量机在TE(Tennessee Eastman,TE)过程中的应用。仿真结果表明该方法分类精度较高且测试时间短,能够满足复杂工业过程对故障诊断的要求。  相似文献   

5.
6.
尝试将模糊系统理论应用于机械故障诊断技术之中。分别完成了“螺杆式压缩机故障诊断专家系统”中的模式识别及逻辑推理中的不确定系统,并在宝钢KS31BT螺杆式压缩机故障分析中得到验证。  相似文献   

7.
将灰狼优化算法和支持向量机算法作为理论指导,并采用灰狼优化算法对支持向量机算法进行优化,以实现燃气轮机故障类型的分类。将灰狼优化算法与遗传算法优化支持向量机方法和粒子群算法优化支持向量机方法进行对比,结果表明,通过灰狼算法优化支持向量机的方法对燃气轮机故障分类的准确率要高于遗传算法优化支持向量机算法和粒子群算法优化支持向量机的故障分类方法。  相似文献   

8.
基于EMD和SVM的传感器故障诊断方法   总被引:5,自引:1,他引:4  
为了解决自确认压力传感器的故障诊断问题,提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的传感器故障诊断方法,该方法对传感器输出信号进行经验模态分解,将其分解为若干个固有模态函数(IMF),对每个IMF通过一定的削减算法增强故障特征,然后计算每个IMF和残余项的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型.通过压力传感器的故障诊断结果表明,该方法能有效的应用于传感器的故障诊断中.  相似文献   

9.
针对数控机床的主轴故障,将经验模态分解(EMD)方法和支持向量机(SVM)相结合,用于故障诊断。采用EMD将信号分解成具有不同特征尺度的本征式分量IMF,分析各IMF,通过求取均方根值提取各特征向量,然后将各特征向量输入支持向量机,建立故障分类器进行状态识别。实验结果表明,预测结果完全正确,该方法有效。  相似文献   

10.
针对目前支持向量机(SVM)参数选择的盲目性,结合遗传算法GA的并行搜索和模拟退火算法sA的概率突跳特性,提出一种改进的基于遗传退火算法(GASA)混合策略优化支持向量机惩罚函数和核函数参数的GASA-SVM算法。利用柴油机供油系统油压波形的实测数据,归一化处理后作为诊断模型的特征值,建立了基于GASA-SVM的柴油机供油系统故障诊断模型。通过与BP神经网络、RBF神经网络、SVM和GA-SVM故障诊断模型比较表明:应用GASA.SVM建立的故障诊断模型在故障识别准确性上优于其它网络模型,能够有效进行柴油机供油系统的故障诊断。  相似文献   

11.
提出了应用K-L变换和支持向量机相结合进行滚动轴承故障诊断的方法。K-L变换可以将高维相关变量压缩为低维独立的主特征向量,而支持向量机可以完成模式识别和非线性回归。利用上述原理根据轴承振动信号的变化特征,采用K-L变换对其提取状态主特征向量,然后利用建立的支持向量机多故障分类器完成滚动轴承故障模式的识别。试验结果表明,K-L变换分解后的主特征向量与支持向量机相结合可以有效地、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新的途径。  相似文献   

12.
By introducing Rough Set Theory and the principle of Support vector machine, a gear fault diagnosis method based on them is proposed. Firstly, diagnostic decision-making is reduced based on rough set theory, and the noise and redundancy in the sample are removed, then, according to the chosen reduction, a support vector machine multi-classifier is designed for gear fault diagnosis. Therefore, SVM' training data can be reduced and running speed can quicken. Test shows its accuracy and efficiency of gear fault diagnosis.  相似文献   

13.
By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM'training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.  相似文献   

14.
为了解决支持向量机应用于多类别模拟故障诊断时泛化性能较低导致诊断精度难以提高的问题,提出了一种基于支持向量机集成的模拟电路故障诊断新方法.首先,通过将本次迭代中不可分区域的样本加入训练集来构造下一次迭代的训练集,以提高基分类器间的差异性;然后选择分类精度不低于平均分类精度的基分类器进行集成,以提高整体诊断精度.实验表明,该方法应用于线性及非线性模拟电路均取得了良好的诊断效果.  相似文献   

15.
支持向量机及其应用研究   总被引:7,自引:1,他引:7  
支持向量机是一种新型机器学习方法,因其出色的学习性能,已成为当前国际机器学习界的研究热点.作者介绍了支持向量机的理论依据及其研究进展.  相似文献   

16.
提出了一种基于支持向量机(support vector machine,SVM)的伺服机构舵反馈电压异常诊断方法。通过对测量数据进行经验模态分解(empirical mode decomposition,EMD),获得各固有模态分量(intrinsic mode functions,IMF),并将其作为特征提取出来,然后构造多类支持向量分类机进行训练与故障模式识别。仿真分析证明,该方法能有效地应用于伺服机构舵反馈电压异常诊断。  相似文献   

17.
基于支持向量机的提升机制动系统故障诊断   总被引:5,自引:0,他引:5  
针对提升机制动系统中常见的卡缸故障,利用支持向量机(SVM)这一新的机器学习方法进行智能诊断.在某一闸系统正常时获得2组信号,卡缸时获得6组信号,采用3层小渡包对闸瓦间隙-时间信号进行分解,以各频带的能量为元素构造特征向量,形成故障诊断样本,在Matlab6.5环境下用SVM工具箱进行编程,建立SVM故障分类器并时测试样本进行测试,从而实现提升机制动系统卡缸故障诊断.实验结果表明,在不到0.1S时间内,就建立了SVM故障分类器,该分类器对测试样本的诊断正确率达到了100%;当训练样本由6组减少至4组时,SVM故障分类器仍可以有效地实现对卡缸故障的诊断.因此,SVM方法对于少样本的故障诊断有较强的适应性,非常适合于矿井提升机这种安全运行要求很高,但又不具备大量故障样本的系统.  相似文献   

18.
提出了一种构造再生核的新方法:用Walsh函数作为空间V0的尺度函数,构造出L2(R)空间的正交规范序列。首先,结合小波多分辨分析,将Hilbert空间分为一系列子空间,并根据可分Hilbert空间与L2(R)的等价性,利用内积同构的线性算子,把V0子空间的尺度函数折算为Hilbert空间的子空间V~0的尺度函数,构造出新的Walsh序列再生核;然后,运用小波包频带能量分解技术提取不同频带内刀具在不同工作状态下的特征向量。通过仿真实验表明,该尺度再生核函数具有更高的辨识精度,较少支持向量数目,充分体现了支持向量机较好的推广性能。  相似文献   

19.
提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树,判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与支持向量机实现故障预测的目的,突破传统算法不能有效预测轴承故障的局限性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号