首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.  相似文献   

2.
Lima bean plants respond to feeding damage of two-spotted spider mites (Tetranychus urticae) with the emission of a complex blend of volatiles that are products of several different biosynthetic pathways. These volatiles attract the carnivorous mite Phytoseiulus persimilis, a specialist predator of the spider mites that exterminates entire prey populations, and thus the volatiles contribute indirectly to plant defense. The volatile blend constitutes information to the carnivores, and blend composition is an important factor in this. Jasmonic acid (JA) is involved in the signal transduction of this induced defense. Application of JA through the petiole of Lima bean plants induces a volatile blend that is similar, but not identical, to that emitted by spider mite-infested plants. The induced volatiles originate from the lipoxygenase pathway, the shikimic acid pathway, and the isoprenoid pathway. Among the induced bean plant volatiles are nitriles and oximes. Of a total of 61 components, 10 are emitted at significantly different rates. Among these are the terpene (E)-4,8-dimethyl-1,3,7-nonatriene and the phenolic methyl salicylate, two compounds that are known to attract P. persimilis. A crucial test for comparing the effect of spider mite damage and JA application on volatile induction is the response of P. persimilis. The carnivore is attracted by volatiles from JA-treated plants. Moreover, even treatment of Lima bean plants with methyl jasmonate vapor made the plants attractive to the carnivorous mites. However, the predators prefer the volatiles from spider-mite-infested Lima bean plants over those from JA-treated plants. Thus, chemical as well as behavioral analyses demonstrate that spider mite damage and JA treatment have similar, although not identical, effects on volatile induction in Lima bean plants.  相似文献   

3.
It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting infochemicals was established to occur systemically throughout the spider mitein-fested plant. Here we describe the extraction of a water-soluble endogenous elicitor from spider mite-infested lima bean leaves. This elicitor was shown to be transported out of infested leaves and was collected in water in which the petiole of the infested leaf was placed. When the petioles of uninfested lima bean leaves were placed in water in which infested leaves had been present for the previous seven days, these uninfested lima bean leaves became highly attractive to predatory mites in an olfactometer when an appropriate control of uninfested lima bean leaves was offered as alternative. The strength of this effect was dependent on the number of spider mites infesting the elicitor-producing leaves. Higher numbers of spider mites resulted in an elicitor solution with a stronger effect. In addition, spider mite density was important. The elicitor obtained from one leaf with 50 spider mites had a stronger effect on the attractiveness of uninfested leaves than the elicitor obtained from three leaves with 17 spider mites each. This suggests that the stress intensity imposed on a plant is an important determinant of the elicitor quantity. While the elicitor has a strong effect on the attractiveness of uninfested leaves, spider mite-infested leaves are still much more attractive to predatory mites than elicitor-exposed leaves. The data are discussed in the context of systemic effects in plant defense and the biosynthesis of herbivore-induced terpenoids in plants.  相似文献   

4.
Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis between volatiles from lima bean plants infested with the prey herbivore Tetranychus urticae, or plants infested with the nonprey caterpillar Spodoptera exigua, depends on spider mite density. In this article, we analyzed the chemical composition of the volatile blends from T. urticae-infested lima bean plants at different densities of spider mites, and from S. exigua-infested plants. Based on the behavioral preferences of P. persimilis and the volatile profiles, we selected compounds that potentially enable the mite to discriminate between T. urticae-induced and S. exigua-induced volatiles. Subsequently, we demonstrated in Y-tube olfactometer assays that the relatively large amounts of methyl salicylate and (3E, 7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene emitted by T. urticae-infested bean plants compared to S. exigua-infested plants enable the predators to discriminate. Our data show that specific compounds from complex herbivore-induced volatile blends can play an important role in the selective foraging behavior of natural enemies of herbivorous arthropods.  相似文献   

5.
We investigated volatile infochemicals possibly involved in location of the generalist predatory mite Neoseiulus californicus to plants infested with spider mites in a Y-tube olfactometer. The predators significantly preferred volatiles from lima bean leaves infested with Tetranychus urticae to uninfested lima bean leaves. Likewise, they were attracted to volatiles from artificially damaged lima bean leaves and those from T. urticae plus their visible products. Significantly more predators chose infested lima bean leaves from which T. urticae plus their visible products had been removed than artificially damaged leaves, T. urticae, and their visible products. These results suggest that N. californicus is capable of exploiting a variety of volatile infochemicals originating from their prey, from the prey-foodplants themselves, and from the complex of the prey and the host plants (e.g., herbivore-induced volatiles). We also investigated predator response to some of the synthetic samples identified as volatile components emitted from T. urticae-infested lima bean leaves and/or artificially damaged lima bean leaves. The predators were attracted to each of the five synthetic volatile components: linalool, methyl salicylate, (Z)-3-hexen-1-ol, (E)-2-hexenal, and (Z)-3-hexenyl acetate. The role of each volatile compound in prey-searching behavior is discussed.  相似文献   

6.
Damage by herbivorous spider mites induces plants to produce volatiles that attract predatory mites that consume the spider mites. A clear attraction to volatiles from Lima bean plants infested with the spider mite Tetranychus urticae has been consistently reported during more than 15 years for the predatory mite Phytoseiulus persimilis. We have monitored the response to volatiles from spider-mite infested Lima bean plants for a laboratory population of the predatory mite from 1991 to 1995 on a regular basis. A reduction in the level of attraction in the laboratory population of P. persimilis was recorded in mid-1992. The attraction of the laboratory population was weaker than that of a commercial population in the latter part of 1992, but the responses of these two populations were similarly weak in 1994 and 1995. Therefore, a behavioral change has also occurred in this commercial population. Experiments were carried out to address the potential causes of this change in attraction. The attraction of predators from a commercial population with a strong response decreased after being reared in our laboratory. Within a predator population with a low degree of attraction, strongly responding predators were present and they could be isolated on the basis of their behavior: predators that stayed on spider-mite infested plants in the rearing set-up had a strong attraction, while predators that had dispersed from the rearing set-up were not attracted to prey-infested bean plants. From our laboratory population with a low degree of attraction, isofemale lines were initiated and maintained for more than 20 generations. All isofemale lines exhibited a consistently strong attraction to spider mite-induced plant volatiles, similar to the attraction recorded for several populations in the past 15 years. Neither in a population with a strong attraction nor in two with a weak attraction was the response of the predators affected by a starvation period of 1–3 hr. Based on these results, possible causes for the observed reduction in predator attraction to spider mite-induced bean volatiles are discussed. The predatory mite P. persimilis is a cornerstone of biological control in many crops worldwide. Therefore, the change in foraging behavior recorded in this predator may have serious consequences for biological control of spider mites.  相似文献   

7.
The impact of linamarin and lotaustralin content in the leaves of lima beans, Phaseolus lunatus L., on the second and third trophic levels was studied in the two-spotted spider mite, Tetranychus urticae (Koch), and its predator Phytoseiulus persimilis Athias-Henriot. The content of linamarin was higher in terminal trifoliate leaves (435.5 ppm) than in primary leaves (142.1 ppm) of Henderson bush lima beans. However, linamarin concentrations were reversed at the second trophic level showing higher concentrations in spider mites feeding on primary leaves (429.8 ppm) than those feeding on terminal trifoliate leaves (298.2 ppm). Concentrations of linamarin in the predatory mites were 18.4 and 71.9 ppm when feeding on spider mites grown on primary and terminal leaves, respectively. The concentration of lotaustralin in primary lima bean leaves was 103.12 ppm, and in spider mites feeding on these leaves was 175.0 ppm. Lotaustralin was absent in lima bean terminal trifoliate leaves and in mites feeding on these leaves. Fecundity of spider mites feeding on lima bean leaves (primary or trifoliate) was not significantly different from mites feeding on red bean, Phaseolus vulgaris L., primary leaves. However, the progeny sex ratio (in females per male) of spider mites feeding on lima bean leaves was significantly lower than progeny of spider mites feeding on red bean leaves (control). Fecundity and progeny sex ratio of P. persimilis were both significantly affected by the concentration of linamarin present in the prey. Changes in concentration of linamarin in living tissue across the three trophic levels are discussed.  相似文献   

8.
9.
In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the plants with herbivorous spider mites (Tetranychus urticae) under greenhouse conditions. Attractiveness differed considerably, with the most attractive variety attracting twice as many predators as the least attractive variety. Chemical analysis of the volatiles released by the infested plants revealed significant differences among varieties, both in quantity and quality of the emitted blends. Comparison of the attractiveness of the varieties with the amounts of volatiles emitted indicated that the quality (composition) of the blend is more important for attraction than the amount of volatiles emitted. The amount of (E)-β-ocimene, (E,E)-TMTT, and two other, yet unidentified compounds correlated positively with the attraction of predatory mites. Quantities of four compounds negatively correlated with carnivore attraction, among them methyl salicylate, which is known to attract the predatory mite P. persimilis. The emission of methyl salicylate correlated with an unknown compound that had a negative correlation with carnivore attraction and hence could be masking the attractiveness of methyl salicylate. The results imply that the foraging success of natural enemies of pests can be enhanced by breeding for crop varieties that release specific volatiles.  相似文献   

10.
When leaves of the ornamental crop Gerbera jamesonii are damaged by the spider mite Tetranychus urticae, they produce many volatile compounds in large quantities. Undamaged gerbera leaves produce only a few volatiles in very small quantities. In the headspace of spider mite-damaged gerbera leaves many terpenoids are present, comprising 65% of the volatile blend. In addition, a number of nitrogen containing compounds, such as oximes and nitriles, are produced.We studied the attraction of P. persimilis to the volatiles from spider mite-damaged gerbera leaves and how attraction is affected by starvation and previous experience. Phytoseiulus persimilis that were reared on spider mites (T. urticae) on Lima bean were not attracted to spider mite-induced volatiles from gerbera. Starvation did not influence the predator's response to these volatiles. In contrast, predators that were reared on spider mites on gerbera leaves were strongly attracted to volatiles from spider mite-infested gerbera. This was found also for predators that originated from a culture on spider mite-infested bean and were offered six days of experience with spider mites on gerbera leaves.  相似文献   

11.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

12.
In response to herbivory by spider mites (Tetranychus urticae), lima bean plants produced significantly greater quantities of extrafloral nectar (EFN) than intact conspecific plants. Moreover, EFN amounts of infested plants depended on exposure to odor of infested neighbor plants. Two d after spider mite infestation, a test plant produced more EFN when exposed prior to infestation to volatiles from infested neighbor plants than when exposed to volatiles from uninfested conspecific plants. However, this effect was only detectable 2 d after spider mite infestation and vanished 4 d after infestation. These results suggest that EFN production is enhanced during the earlier stages of damage by T. urticae in response to previous exposure to volatiles from infested neighbor plants.  相似文献   

13.
Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.  相似文献   

14.

In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile “emitter” plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring “receiver” plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.

  相似文献   

15.
Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey-associated mixtures of volatiles and, thus, to odor blends as a whole.  相似文献   

16.
We investigated the olfactory response of the predatory mitePhytoseiulus persimilis to cucumber leaves infested with prey, the herbivorous spider miteTetranychus urticae. The predators responded to volatiles from young rather than old infested cucumber leaves. GC-MS analysis of the head-space of spider mite-infested, artificially damaged and undamaged cucumber plants showed that herbivore-induced plant volatiles were present among the volatiles of both old and young infested cucumber leaves. The major components of the herbivore-induced plant volatiles were (3E)-4,8-dimethyl-1,3,7-nonatriene and (E)--ocimene: these compounds are known to attract the predatory mites. In addition, we found three oximes (2-methylbutanalO-methyloxime, 3-methylbutanalO-methyloxime, and an unknown oxime) in the headspace of both old and young infested cucumber leaves. 3-MethylbutanalO-methyloxime and the unknown oxime were much more abundant in the headspace of infested old cucumber leaves. The potential adaptive value of differential attractiveness of cucumber plant leaves of different age is discussed.  相似文献   

17.
Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.  相似文献   

18.
Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.  相似文献   

19.
The Kanzawa spider mite, Tetranychus kanzawai, is a polyphagous herbivore that feeds on various plant families, including the Leguminacae. Scars made by the mite on lima bean leaves (Phaseolus lunatus) were classified into two types: white and red. We obtained two strains of mites—“White” and “Red”—by selecting individual mites based on the color of the scars. Damage made by the Red strain induced the expression of genes for both basic chitinase, which was downstream of the jasmonic acid (JA) signaling pathway, and acidic chitinase, which was downstream of the salicylic acid (SA) signaling pathway. White strain mites also induced the expression of the basic chitinase gene in infested leaves but they only slightly induced the acidic chitinase gene. The Red genotype was dominant over the White for the induction of the acidic chitinase gene. The amount of endogenous salicylates in leaves increased significantly when infested by Red strain mites but did not increase when infested by White strain mites. JA and SA are known to be involved in the production of lima bean leaf volatiles induced by T. urticae. The blend of volatiles emitted from leaves infested by the Red strain were qualitatively different from those infested by the White strain, suggesting that the SA and JA signaling pathways are differently involved in the production of lima bean leaf volatiles induced by T. kanzawai of different strains.Ryo Matsushima and Rika Ozawa contributed equally to this work.  相似文献   

20.
We studied the response of a predatory thrips, Scolothrips takahashii, towards herbivore-induced plant volatiles emitted by Lima bean plants infested by two-spotted spider mites Tetranychus urticae (green form). Tests were conducted with a Y-tube olfactometer in the laboratory and with traps under field conditions. The odor of artificially damaged and uninfested Lima bean leaves was not more attractive than clean air in the Y-tube olfactometer. The predatory insects showed a greater preference for Lima bean leaves infested by the two-spotted spider mites than for either clean air or uninfested bean leaves. They showed the same preference towards infested leaves from which all spider mites and their visible products had been removed. Neither the spider mites themselves nor their products attracted the predators. In a satsuma mandarin grove, two traps with infested Lima bean plants as an odor source attracted 42 adult S. takahashii in 55 days, whereas no S. takahashii were trapped in two control traps with uninfested Lima bean plants during the same period. No S. takahashii were found during this period in the vicinity of either the sample traps or the control traps (5-m radius of each trap). These data showed that S. takahashii use herbivore-induced plant volatiles in their foraging behavior in natural ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号