首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(15):2375-2383
Poly(ether-b-amide) (PEBA)/Tween20 gel membranes containing from 0 wt% to 65 wt% of Tween20 in PEBA2533, PEBA3533, and PEBA4033 were prepared by solvent casting method for CO2/N2 separation. The gas separation properties of the polymeric gel membranes were tested for single gases of CO2 and N2 at 25°C with the feed pressure of 0.6 atm. For all pure PEBA membranes, CO2 and N2 permeability decreased as the amount of polyamide block increased, but CO2/N2 selectivity increased. For PEBA/Tween20 gel membranes, both the CO2 permeability and CO2/N2 selectivity were greatly enhanced with the increase of Tween20 content. For the membrane of PEBA4033/Tween20-65, CO2/N2 selectivity, and CO2 permeability reached 54 and 146 Barrer, respectively, which is very interesting for potential application in CO2 removal from flue gas.  相似文献   

2.
In recent years, gas separation has become an important step in many production process streams and part of final products. Through the use of melt co‐extrusion and subsequent orientation methods, gas separation membranes were produced entirely without the use of solvents, upon which current methods are highly dependent. Symmetric three layer membranes were produced using poly(ether‐block‐amide) (PEBA) copolymers, which serve as a selective material that exhibits a high CO2 permeability relative to O2. Thin layers of PEBA are supported by a polypropylene (PP) layer that is made porous through the use of two methods: (1) inorganic fillers or (2) crystal phase transformation. Two membrane systems, PEBA/(PP + CaCO3) and PEBA/β‐PP, maintained a high CO2/O2 selectivity while exhibiting reduced permeability. Incorporation of an annealing step either before or after orientation improves the membrane gas flux by 50 to 100%. The improvement in gas flux was a result of either elimination of strain induced crystallinity, which increases the selective layer permeability, or improvement of the PP crystal structure, which may increase pore size in the porous support layer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39765.  相似文献   

3.
A novel composite membrane using polydimethylsiloxane (PDMS) as a top active layer and ceramic nanocomposite as the support layer was developed for the gaseous hydrocarbons separation. For the fabrication of hybrid membranes, nanocomposite technology applied for manufacturing ceramic supports with controllable microstructures. Also, a new method was used for coating a uniform and no penetrated polymeric layer. Top layer of ceramic support with nanocomposite microstructures was fabricated using 5 wt % α‐Al2O3‐SiO2 bidispersed suspensions with optimum weight fraction of second phase (SiO2) based on the fractional collision frequency theory. PDMS selective layer was coated on the outer surface of the porous ceramic nanocomposite support by dip‐coating method. In this respect, the effect of several parameters such as pretreatment temperature, PDMS solution concentration, and number of coated polymeric layers on prepared layers morphology and hybrid membrane performance in the separation of condensable hydrocarbons (iso and n‐butane) from hydrogen were investigated. The results showed that the membranes fabricated at 140°C as pretreatment temperature and three polymeric layers by 7, 15, and 15 wt % PDMS concentration, respectively, had a high selectivity (>25 at 2 bar)) in C4H10/H2 separation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Graphene oxide (GO)‐polyether block amide (PEBA) mixed matrix membranes were fabricated and the effects of GO lateral size on membranes morphologies, microstructures, physicochemical properties, and gas separation performances were systematically investigated. By varying the GO lateral sizes (100–200 nm, 1–2 μm, and 5–10 μm), the polymer chains mobility, as well as the length of the gas channels could be effectively manipulated. Among the as‐prepared membranes, a GO‐PEBA mixed matrix membrane (GO‐M‐PEBA) containing 0.1 wt % medium‐lateral sized (1–2 μm) GO sheets showed the highest CO2 permeation performance (CO2 permeability of 110 Barrer and CO2/N2 mixed gas selectivity of 80), which transcends the Robeson upper bound. Also, this GO‐PEBA mixed matrix membrane exhibited high stability during long‐term operation testing. Optimized by GO lateral size, the developed GO‐PEBA mixed matrix membrane shows promising potential for industrial implementation of efficient CO2 capture. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2843–2852, 2016  相似文献   

5.
Mixed-matrix membranes were prepared by incorporating functionalized silica nanoparticles (SNPs) into the poly(ether-block-amide). The gas permeation properties of membranes were investigated for the separation of N2 and CO2 from CH4. Results revealed that chemical modification of SNPs and incorporation of the carboxylic groups on its surface had a strong interaction with the polymer matrix and improved the distribution of the nanofiller in the membrane matrix. According to the gas permeation experiments at various SNPs loadings and feed pressures, different trends were observed for the permeability and selectivity. Incorporation of the modified-SNPs nanofiller into the membrane enhanced the CH4 permeability, as well as the CH4/N2 and CO2/N2 selectivities.  相似文献   

6.
PDMS/ceramic nanocomposite membranes were fabricated via dip-coating method. Tubular porous nanocomposite ceramic supports were used as membrane substrates and polydimethylsiloxane was applied as a top active layer. The hybrid membranes were characterized morphologically by scanning electron microscopy (SEM) and their gas transport properties were measured using single gas permeation (butane and hydrogen) at ambient temperature and different pressures. SEM micrographs confirmed the penetration of polymeric layer into ceramic support pores at low concentrations of PDMS solution. Experimental results clearly indicated that the undesirable penetration during the dip-coating stage could be avoided by increasing the concentration of PDMS coating solution. This led to the formation of a uniform and dense coating layer without penetration into pores of the support. These hybrid membranes showed higher permeability combined to a suitable selectivity in comparison with dense homogeneous PDMS membrane. In addition, at low pressures, the high selectivity of PDMS/ceramic nanocomposite membranes for condensable hydrocarbons separation revealed that the dominant mechanism is solution-diffusion.  相似文献   

7.
CO2-selective cross-linked poly (ethylene oxide) (PEO) membranes were prepared by the UV irradiation of high molecular weight PEO in the presence of benzophenone as photo-initiator, which act as a hydrogen-abstracting agent. The main goal was to study the effects of the cross-linking process on the structural properties of hydrogel films intended for the gas separation applications. It was found that the gel fraction, and cross-link density enhanced, and the crystallinity, and the size of spherulites decreased by the cross-linking process. Moreover, the permeation performances for N2, O2, CH4, and CO2 and the relationship between the gas permeation performances and physical properties were investigated. The results indicated that the degree of cross-linking and crystallinity could be controlled by changing the initiator concentration, as by increasing the initiator content, the crystallinity percent and gas permeability of the membranes decreased, and the gas pair ideal selectivity of CO2/N2, CO2/CH4, CH4/N2, and O2/N2 increased.  相似文献   

8.
Ordered mesoporous silica/carbon composite membranes with a high CO2 permeability and selectivity were designed and prepared by incorporating SBA-15 or MCM-48 particles into polymeric precursors followed by heat treatment. The as-made composite membranes were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and N2 adsorption, of which the gas separation performance in terms of gas permeability and selectivity were evaluated using the single gas (CO2, N2, CH4) and gas mixtures (CO2/N2 and CO2/CH4, 50/50 mol.%). In comparison to the pure carbon membranes and microporous zeolite/C composite membranes, the as-made mesoporous silica/C composite membranes, and the MCM-48/C composite membrane in particular, exhibit an outstanding CO2 gas permeability and selectivity for the separation of CO2/CH4 and CO2/N2 gas pairs owing to the smaller gas diffusive resistance through the membrane and additional gas permeation channels created by the incorporation of mesoporous silicas in carbon membrane matrix. The channel shape and dimension of mesoporous silicas are key parameters for governing the gas permeability of the as-made composite membranes. The gas separation mechanism and the functions of porous materials incorporated inside the composite membranes are addressed.  相似文献   

9.
Hangzheng Chen 《Polymer》2010,51(18):4077-7736
Reverse selective membranes comprising poly(ethylene oxide) (PEO) containing copolyimides (PEO-PI) with variations of acid dianhydrides and diamines have been synthesized for hydrogen purification. The reverse selectivity of the membranes decimate the energy required for hydrogen recompression process. Factors including PEO content, PEO molecular weight, and fractional free volume (FFV) that would affect the gas transport performance have been investigated and elucidated in terms of degree of crystallinity, phase separation in the PEO domain as well as inter-penetration between the hard and soft segments. In mixed gas tests of CO2 and H2 mixtures, a highly condensable CO2 out compete H2 for the sorption sites in hard segment and diminishes H2 permeability. Thus the CO2/H2 selectivity in the mixed gas tests is much higher than that in pure gas tests. Mixed gas permeation tests at 35 °C and 2atm show that the best reverse selective membranes have a CO2 permeability of 179.3 Barrers and a CO2/H2 permselectivity of 22.7. The physical properties of PEO-PIs have also been characterized by FTIR, DSC, GPC, WAXS, AFM and tensile strain tests.  相似文献   

10.
《分离科学与技术》2012,47(8):1224-1230
The development of gas separation membranes able to work at high temperatures require robust and thin ceramic layers. In this work, zirconia membranes have been prepared by the sol-gel method, following the colloidal sol route. The microporosity and crystallinity of the ZrO2 material was tested by N2 adsorption and XRD. The derived active zirconia layers were defect-free as seen by SEM. The optimum firing temperature range was set in the range 400–500°C. He, H2, CO2, N2 gas permeation was conducted at temperatures up to 200°C. High permeances were obtained and the microporosity of the zirconia layer was confirmed.  相似文献   

11.
Enhancing the performance of gas separation membranes is one of the major concerns of membrane researchers. Thus, in this study, poly(ether-block-amide) (Pebax)/polyetherimide (PEI) thin-film composite membranes were prepared and their CO2/CH4 gas separation performance was investigated by means of pure and mixed gases permeation tests. To improve the properties of these membranes, halloysite nanotubes (HNT) were added to Pebax layer at different loadings of 0.5, 1, 2, and 5 wt % to form Pebax-HNT/PEI membranes. Scanning electron microscopy, gas sorption, X-ray diffraction, Fourier-transform infrared, and differential scanning calorimetry tests were also performed to investigate the impact of HNT on structure and properties of prepared membranes. Results showed that both CO2/CH4 selectivity and CO2 permeance increased by adding HNT to Pebax layer up to 2 wt %. By increasing HNT loading to 5 wt %, the CO2/CH4 selectivity decreased from 32 to 18, while CO2 permeance increased from 3.25 to 4.2 GPU. Pebax/PEI and Pebax-HNT/PEI membranes containing 2 wt % of HNT were tested using CO2/CH4 gas mixtures at different feed CO2 concentrations and feed pressure of 4 bar. The results showed that with increasing CO2 concentration from 20 to 80 vol %, CO2/CH4 selectivity of Pebax/PEI composite membranes increased by 19%, while, in Pebax-HNT/PEI membrane, CO2/CH4 selectivity decreased by 40%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48860.  相似文献   

12.
Poly(ether block amide) (PEBA) thermoplastic elastomers are used in many different applications, with recent development being on those which show promise as high gas flux membranes. PEBA copolymers with high polyether soft block content are possible candidates for gas separation applications due to their high permeability relative to current commercially used polymers and good selectivity for acid gases such as CO2. To be effective and efficient, the high flux must be maintained over the course of production and use. A series of PEBA copolymers containing poly(tetramethylene oxide) and polyamide-12 was studied to explore the influence of mechanical orientation and copolymer composition on gas permeability and morphology. Upon uniaxial orientation, several compositions of PEBA copolymers exhibited a significant decrease in permeability, both in the oriented and elastically recovered states. Copolymer composition strongly influenced the degree of change seen in the permeability upon orientation. WAXS and DSC were used to identify strain-induced crystallization that occurred during orientation. Rubbery materials can crystallize under high strains, and PEBA is no exception. Strain-induced crystallization of the polyether blocks produced a tortuous path for gas diffusion, resulting in as much as a 3.5× decrease in permeability for oriented PEBA films. To maintain high flux for membrane applications, elastic recovery and thermal treatment proved beneficial in reversing the effects of uniaxial orientation on PEBA copolymers.  相似文献   

13.
The development of desirable chemical structures and properties in nanocomposite membranes involve steps that need to be carefully designed and controlled. This study investigates the effect of adding multiwalled nanotubes (MWNT) on a Kapton–polysulfone composite membrane on the separation of various gas pairs. Data from Fourier transform infrared spectroscopy and scanning electron microscopy confirm that some studies on the Kapton–polysulfone blends are miscible on the molecular level. In fact, the results indicate that the chemical structure of the blend components, the Kapton–polysulfone blend compositions, and the carbon nanotubes play important roles in the transport properties of the resulting membranes. The results of gas permeability tests for the synthesized membranes specify that using a higher percentage of polysulfone (PSF) in blends resulted in membranes with higher ideal selectivity and permeability. Although the addition of nanotubes can increase the permeability of gases, it decreases gas pair selectivity. Furthermore, these outcomes suggest that Kapton–PSF membranes with higher PSF are special candidates for CO2/CH4 separation compared to CO2/N2 and O2/N2 separation. High CH4, CO2, N2, and O2 permeabilities of 0.35, 6.2, 0.34, and 1.15 bar, respectively, are obtained for the developed Kapton–PSF membranes (25/75%) with the highest percentage of carbon nanotubes (8%), whose values are the highest among all the resultant membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43839.  相似文献   

14.
A detailed survey of the effect of moisture on the CO2/N2 permeation and separation performance of Mobile Five (MFI) zeolite membranes in view of downstream postcombustion CO2 capture applications in power plants and incinerators is presented. The membranes, displaying a nanocomposite architecture, have been prepared on α‐alumina tubes by pore‐plugging hydrothermal synthesis at 443 K for 89 h using a precursor clear solution with molar composition 1 SiO2:0.45 tetrapropylammonium hydroxide:27.8 H2O. The synthesized membranes present reasonable permeation and CO2/N2 separation properties even in the presence of high water concentrations in the gas stream. A critical discussion is also provided on the technico‐economical feasibility (i.e., CO2 recovery, CO2 purity in the permeate, module volume, and energy consumption) of a membrane cascade unit for CO2 capture and liquefaction/supercritical storage from standard flue gases emitted from an incinerator. Our results suggest that the permeate pressure should be kept under primary vacuum to promote the CO2 driving force within the membrane. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3183–3194, 2012  相似文献   

15.
Mixed matrix metal–organic framework (MOF) membranes show excellent application prospects in gas separation. However, their stability in various practical application scenarios is poor, especially under humid conditions. Herein, we encapsulated a hydrophobic ionic liquid (IL) into the cavity of MOFs, which effectively mitigated the competition between H2O and CO2 in humid gas mixtures, leading to stable and high-performance gas separation. For this reason, the resulting membranes using polymer of intrinsic miroporosity-1 (PIM-1) as a polymer matrix show good CO2/N2 separation performance and long-term test stability under humid environment. In particular, the 20 wt% IL-UiO/PIM-1 shows a high permeability of 13,778 Barrer and competitive CO2/N2 separation factor of ~35.2, transcending the latest upper bound. Besides, the according membrane module exhibits slightly decreased CO2 permeability and selectivity, promoting the application of self-supporting membranes. This work provides a reliable strategy for the rational design of MOF-based hybrid membranes under extreme conditions.  相似文献   

16.
毛恒  王月  王森  刘伟民  吕静  陈甫雪  赵之平 《化工学报》2022,73(3):1389-1402
渗透汽化(PV)膜分离是一种高效节能、无污染的化工分离技术,在有机废水处理领域的应用潜力巨大。以3-氨丙基三乙氧基硅烷(APTES)改性二维ZIF-L(AZLs),将其引入聚醚嵌段酰胺(PEBA)内制备AZLs/PEBA混合基质膜,用于分离水溶液中的苯酚。系统表征了所制膜的微结构与物化特性,考察了APTES添加量、AZLs填充量、操作温度、料液浓度等对膜分离性能的影响。结果表明:AZLs均匀分散在PEBA基质中,表明两者具有良好的界面相容性。AZLs的加入使得膜疏水性增强而表面自由能降低,从而提高了PEBA膜的选择性。当分离80℃、1000 mg/kg苯酚水溶液时,AZLs/PEBA膜总通量可达2046 g/(m2·h),分离因子为25.4,并且具有一定的稳定性。所制AZLs/PEBA混合基质膜在含酚废水处理方面具有应用前景。  相似文献   

17.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide), PDMPO, poly(2,6‐diphenyl‐1,4‐phenylene oxide), PDPPO, as well as their copolymers of different compositions, having both random and block structures, have been synthesized and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and gel permeation chromatography. Solution‐cast films were prepared from all synthesized polymers using chloroform as a solvent. The thermal properties of the resulting films were characterized by differential thermal analysis and differential scanning calorimetry, whereas their morphology was investigated using X‐ray diffraction. Ultimately, the potential of the synthesized polymers for gas separation was studied by examining gas permeation properties of the respective thin films in single gas permeation tests involving N2, O2, CH4, and CO2. In general, the O2 and CO2 permeability coefficients decrease with the PDPPO content. However, the largest drop in the permeability coefficients occurs between PDMPO and a copolymer having the lowest PDPPO content, and the permeability coefficients PDPPO are comparable or even lower than the permeability coefficients of the copolymers having the largest PDDPO content. On the basis of combination of the permeability coefficients and their ratios for CO2/CH4 and O2/N2, random copolymers appear to be a better candidate for gas separation membranes than their block counterparts. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The permeability coefficients of O2, N2, and CO2 gases at 25°C were examined for composite membranes that were prepared by filling poly(ethylene oxide)(PEO) with different molecular weights into a porous membrane. The permeability coefficients of O2, N2, and CO2 were 2 × 10−10 – 4 × 10−10, 5 × 10−11 – 9.5 × 10−11, and 6 × 10−10 – 1 × 10−9 (cm3 STPcm/cm2 s cmHg), respectively. The higher permeability coefficients of CO2 are explained in terms of high solubility of CO2 in filled PEO. The permeability coefficient of CO2 was affected by the degree of crystallinity of PEO in the composite. On the other hand, there was little effect of crystallinity on O2 and N2 permeability coefficients. Some probable relationships between selectivities of O2 to N2 and CO2 to N2 and the degree of crystallinity of PEO were observed. The CO2 gas permeability coefficients of the composite membrane for PEO50000 (Mw = 5 × 104) showed a marked change due to melting or crystallization of PEO. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2733–2738, 1999  相似文献   

19.
Physical and gas transport properties of hyperbranched polyimide-silica hybrid membranes were investigated. Hyperbranched polyamic acid as a precursor was prepared by polycondensation of a triamine, 1,3,5-tris(4-aminophenoxy) benzene (TAPOB), and a dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), and subsequently modified a part of end groups by 3-aminopropyltrimethoxysilane (APTrMOS). The hyperbranched polyimide-silica hybrid membranes were prepared by sol–gel reaction using the polyamic acid, water, and alkoxysilanes. 5% weight-loss temperature of the hybrid membranes increased with increasing silica content, indicating effective crosslinking at polymer-silica interface mediated by APTrMOS moiety. On the other hand, glass transition temperature of the hybrid membranes prepared with methyltrimethoxysilane (MTMS) showed a minimum value at low silica content region, suggesting insufficient formation of three-dimensional Si O Si network compared to the hybrid membranes prepared with tetramethoxysilane (TMOS). CO2, O2, N2, and CH4 permeability coefficients of the hybrid membranes increased with increasing silica content. Especially for TMOS/MTMS combined system, the hybrid membranes showed simultaneous enhancements of gas permeability and CO2/CH4 separation ability. It was concluded that the 6FDA-TAPOB hyperbranched polyimide-silica hybrid membranes have high thermal stability and excellent CO2/CH4 selectivity and are expected to apply to high-performance gas separation membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Herein we demonstrate the synthesis of ZIF-8 membranes via secondary seeded growth on tubular stainless steel porous supports. The membranes were characterized and evaluated for the separation of CO2/N2 and N2/CH4 gas mixtures. The adsorbate polarizability correlated with the adsorption capacity on ZIF-8, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2. The CO2/N2 separation selectivity’s for the ZIF-8 membranes were close to the Knudsen selectivity, suggesting that Knudsen diffusion through non-ZIF pores dominated the separation. On the other hand, the separation selectivity’s for N2/CH4 were slightly higher than the Knudsen selectivity, indicating that the flow contribution from the ZIF pores favored the transport of N2 over CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号