首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the removal of Cd2+ ions from aqueous solutions by acid formaldehyde pretreated chestnut (Castanea sativa) shell was conducted in batch conditions. The influence of different parameters: adsorption time, temperature (15, 25 and 35 °C) and initial concentration of Cd2+ ions (15.3, 50.5 and 87.3 mg L− 1), on cadmium uptake was analysed. Cadmium free and cadmium loaded chestnut shell were characterized by FTIR spectroscopy, which evidenced the functional groups involved in cadmium uptake. Cadmium adsorption equilibrium could be described by the Freundlich adsorption model at all the temperatures essayed, which predicted shell heterogeneity. The Cd2+ adsorption process by chestnut shell followed the pseudo second order kinetic model. Cadmium sorption capacity increased with decreasing temperature at an initial concentration of 15.3 mg L− 1 and with increasing initial cadmium concentration at a temperature of 25 °C. The second order kinetic constant, which increased with increasing temperature, was used to calculate the energy of adsorption as equal to 19.2 kJ mol− 1.  相似文献   

2.
Ahmet Sar? 《Desalination》2009,249(1):260-316
The adsorption characteristics of Pb(II) and Cd(II) onto colemanite ore waste (CW) from aqueous solution were investigated as a function of pH, adsorbent dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the adsorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The adsorption capacity of CW was found to be 33.6 mg/g and 29.7 mg/g for Pb(II) and Cd(II) ions, respectively. Analyte ions were desorbed from CW using both 1 M HCl and 1 M HNO3. The recovery for both metal ions was found to be higher than 95%. The mean adsorption energies evaluated using the D-R model indicated that the adsorption of Pb(II) and Cd(II) onto CW were taken place by chemisorption. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) showed that the adsorption of both metal ions was feasible, spontaneous and exothermic at 20-50 °C. Adsorption mechanisms were also investigated using the pseudo-first-order and pseudo-second-order kinetic models. The kinetic results showed that the adsorption of Pb(II) and Cd(II) onto CW followed well pseudo-second order kinetics.  相似文献   

3.
The current paper presents a synthesis of a novel ion-imprinted hybrid copolymer (IIHC) [poly(1-vinylimidazole)-co-(3-(trimethoxysilyl)propyl methacrylate) and its application to selective adsorption of Pb2+ ions. The hybrid copolymer was prepared by coupling free radical addition and sol-gel processing, using tetraethoxysilane (TEOS) as cross-linker. Thermogravimetry (TG), FT-IR, X-ray diffraction, specific surface area (BET) and scanning electron microscopy (SEM) were used to characterize the copolymers. The equilibrium data obtained were fitted very well to the non-linear Langmuir-Freundlich isotherm model, as compared to other models, and the maximum adsorption uptake was found to be 7.6 mg g−1. The thermodynamic parameters, including Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of the adsorption process, were found to be −16.23 kJ mol−1, −10.37 kmol−1 and −19.42 J K−1 mol−1, respectively. These results demonstrate that the adsorption of Pb2+ onto the hybrid copolymer takes place by a spontaneous and exothermic process with further decrease in the degree of freedom without disordering at the solid-solution interface due to the negative Δ value. Furthermore, the pseudo-first-order and pseudo-second-order models were used to describe the kinetic data. The experimental data were fitted well to the pseudo-first-order kinetics. Under competitive adsorption conditions, the ion-imprinted hybrid copolymer was 8.8, 64.9 and 16 times more selective when compared to the blank copolymer (NIC - non-imprinted copolymer) for Pb2+/Cu2+, Pb2+/Cd2+, and Pb2+/Zn2+ systems.  相似文献   

4.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

5.
Z. Elouear  J. Bouzid  N. Boujelben 《Fuel》2008,87(12):2582-2589
The removal characteristics of cadmium (Cd(II)) and nickel (Ni(II)) ions from aqueous solution by exhausted olive cake ash (EOCA) were investigated under various conditions of contact time, pH, initial metal concentration and temperature. Batch kinetic studies showed that an equilibrium time of 2 h was required for the adsorption of Ni(II) and Cd(II) onto EOCA. Equilibrium adsorption is affected by the initial pH (pH0) of the solution. The pH0 6.0 is found to be the optimum for the individual removal of Cd(II) and Ni(II) ions by EOCA. The adsorption test of applying EOCA into synthetic wastewater revealed that the adsorption data of this material for nickel and cadmium ions were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The estimated maximum capacities of nickel and cadmium ions adsorbed by EOCA were 8.38 and 7.32 mg g−1, respectively. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change (ΔG°) and the enthalpy change (ΔH°) showed that the process was feasible and endothermic respectively. As the exhausted olive cake is discarded as waste from olive processing, the adsorbent derived from this material is expected to be an economical product for metal ion remediation from water and wastewater.  相似文献   

6.
A series of linear copolymers of glycolide and 1,3-trimethylene carbonate were synthesized by bulk ring-opening polymerization. The copolymers were characterized by 1H NMR, 13C NMR, viscometry, and differential scanning calorimetry (DSC). The dependency of reaction temperature, reaction time, and the feed composition on the microstructure of the copolymers was examined by 13C NMR analysis. The microstructural analysis using 13C NMR was useful to calculate the average block length of the glycolyl (LG) and trimethylene carbonyl (LT) sequence. The structural change such as transesterification, which was assigned by TGT sequence, was reflected in the average block length and the sequence of each monomeric unit in the copolymer. The average length of glycolyl sequence (LG) was much longer than that of trimethylene carbonyl sequence (LT) in polymerization temperature of 100-150 °C. Upon further increasing the polymerization temperature, the LG decreased, but the change of LT was insignificant. During the polymerization, transesterification did not occur at 100 °C, but it was observed at a polymerization temperature range of 130-200 °C resulting in the decrease in LG. As the composition of trimethylene carbonate increased, LG decreased, but LT do not show remarkable change. DSC results showed a close relationship between crystallinity and nature of microstructural sequence. The crystallinity of block copolymers was mainly decided by the average length of the glycolyl block.  相似文献   

7.
Nano-crystalline strontium hexaferrite (SrFe12O19) powder was synthesized using the classical co-precipitation and microemulsion methods. The precursors were obtained by precipitating Sr2+ and Fe2+ ions using tetramethylammonium hydroxide and calcinating at different temperatures ranging from 400 °C to 1000 °C in air. The influence of the Sr2+/Fe3+ mol ratio and the calcination temperature on the product formation and magnetic properties were studied. The formation of nanosized particles of SrFe12O19 with a relatively high saturation magnetization Ms = 64 Am2/kg, remanent magnetization of Mr = 39 Am2/kg and a coercitivity of Hc = 5.5 kOe was achieved at a Sr2+/Fe3+ mol ratio of 1:8 calcined at 900 °C. The formation of the SrFe12O19 was inspected using XRD analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA), TEM, and magnetic measurements.  相似文献   

8.
Sr-hexaferrites prepared by co-precipitation method and calcined at 700-1000 °С have been characterized by thermogravimetric and differential thermal analysis (TG-DTA), Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), and Ar adsorption techniques. It has been shown that hexaferrite phase formed after calcination at 700 °С is amorphous and its crystallization occurs at 800 °С. Specific surface area (SBET) of the samples calcined at 700 °С is 30-60 m2/g. Reduction in hydrogen proceeds in several steps, Fe(III) in the hexaferrite structure being practically reduced to Fe0. Amount of hydrogen necessary for the reduction of the samples decrease in the order: SrMn2Fe10O19 > SrFe12O19 > SrMn6Fe6O19 > SrMn2Al10O19. Surface composition of the ferrites differs from bulk. According to XPS data, the surface is enriched with strontium. Sr segregation is most probably explained by the formation of surface carbonates and hydroxocarbonates. The main components on the surface are in oxidized states: Mn3+ and Fe3+. Maximum activity in the methane oxidation is achieved for the SrMnxFe12−xO19 (0 ? x ? 2) catalysts. These samples are characterized by highest amount of the hexaferrite phase, which promotes change of oxidation state Mn(Fe)3+ ↔ Mn(Fe)2+.  相似文献   

9.
Adsorption of Pb(II) ion by a novel extractant-impregnated resin, EIR, was studied as a function of various experimental parameters using batch adsorption experiments. The new EIR was prepared by impregnating gallocyanine (GCN) onto Amberlite XAD-16 resin beads. The EIR was characterized by nitrogen analysis and SEM micrographs. The new EIR showed excellent selectivity factor values (α) for Pb(II) adsorption respect to other metal ions. The effects of some chemical and physical variables were evaluated and the optimum conditions were found for Pb(II) removal from aqueous solutions. The equilibrium adsorption isotherm was fitted with the Langmuir adsorption model. The maximum adsorption capacity (qmax) of EIR for Pb(II) ions was found to be 367.92 mg g−1. The kinetic studies showed that the intra-particle diffusion is the rate-controlling step. Also, the intra-particle diffusion coefficients, Dip values, were of the order of 10−12 m2 s−1. The values of enthalpy (ΔH°) were positive, which confirms the endothermic nature of adsorption process. Also, the positive entropy changes (ΔS°) were showed that the randomness increased along with the adsorption process. In addition, the obtained negative values of Gibbs free energy (ΔG°) indicated feasible and spontaneous nature of the adsorption process at different temperatures. The new adsorbent was very stable so that it can be successfully used for many consecutive cycles without significant loss in its adsorption capacity.  相似文献   

10.
Micro- and mesoporous carbide-derived carbon (CDC) was synthesised from molybdenum carbide (Mo2C) powder by gas phase chlorination in the temperature range from 400 to 1200 °C. Analysis of XRD results show that C(Mo2C), chlorinated at 1200 °C, consist mainly on graphitic crystallites of mean size, La = 9 nm and Lc = 7.5 nm. The first-order Raman spectra showed the graphite-like absorption peak at ∼1587 cm−1 and the disorder-induced (D) peak at ∼1348 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1855 m2 g−1 and total pore volume up to 1.399 cm3 g−1 were obtained. Sorption measurements showed the presence of both micro- and mesopores after chlorination at 400-900 °C and only mesopores after chlorination at 1000°-1200 °C. Stepwise formation of micro- and mesopores was achieved and the peak pore size can be shifted from 0.8 nm up to 4 nm by increasing the chlorination temperature.  相似文献   

11.
Bin Du  Wenbin Sun  Yong Cao 《Polymer》2007,48(5):1245-1254
Polyfluorenes with 2-(2′-pyridyl)-benzimidazole (P1, P2 and P4) and 5-methyl-3-(pyridin-2-yl)-1,2,4-triazole (P3) groups in the side chain were synthesized by Suzuki polycondensation. The responsive properties of polymers on metal ions and H+ were investigated by absorption and emission spectra. The fluorescences of polymers (P1-P4) were completely quenched upon the transition metal ions such as Co2+, Ni2+, Fe3+ and Ag+ due to the enhanced electronic communication properties of conjugated polymers. The obvious differences to Ni2+ ion responsive sensitivity were observed between P1 and P4 polymers. The fluorescences of P1 and P4 were quenched to 50 (I0/I) and to 22 (I0/I) upon the addition of a Ni2+ solution of 3.2 × 10−6 M, as well as 5.0 × 10−6 M, respectively, owing to the different conjugated backbone. The fluorescences of P2 and P3 were completely and hardly quenched upon the addition of a Al3+ solution of 1.0 × 10−4 M, respectively, owing to the different receptors in the side chain. P2 showed good selectivity to Ni2+ ion in the range of quencher concentration as low as 5 ppm, owing to the different chelating abilities of receptor with ions. Cu2+ and Mn2+ ions hardly quenched the fluorescences of polymers (P1-P4), which were different from the oligopyridyl-functionalized conjugated polymers. The results further opened the opportunities to develop the tailored sensory materials through the appropriate alteration of receptors in the side chain and the conjugated backbone.  相似文献   

12.
Typha domingensis phytomass was used as a biosorbent for metal ions removal from wastewater. A full 23 factorial design of experiments was used to obtain the best conditions of biosorption of Fe3+ and Zn2+ from water solutions. The three factors considered were temperature, pH, and biosorbent dosage. Two levels for each factor were used; pH (2.5 and 6.0), temperature (25 and 45 °C), and phytomass loading weight (0.5 and 1 g/50 ml). Batch experiments were carried out using 50 ml solutions containing 10 mg/l Fe3+ and 4 mg/l Zn2+ simulating the concentration of those metals in a real wastewater effluent. The removal percentages of iron and zinc after 120 min of contact time were then evaluated. The results were analyzed statistically using the Minitab 15 statistical software to determine the most important factors affecting the metals removal efficiency. The pH was found to be the most significant factor for the two studied metal ions.  相似文献   

13.
Rice hull was calcined to rice hull ash (RHA) at 500 °C under 20 mL air/s for 50 min. The RHA thus prepared has been found to be able to remove chromium (III) ion from aqueous solution, though not very efficient. The experiments indicated that the rate of removal of Cr3+ and the removal of Cr3+ at equilibrium was increased upon decreasing the RHA dosage. The removal could also be enhanced upon increasing the initial chromium concentration, or adsorption temperature. However, pH in the range of 2.5-5.4 or stroke speed higher than 120 stroke/min could not change the removal. The dependence of the RHA dosage and the initial chromium concentration on the removal have been found to be strong, while that of adsorption temperature is mild. An empirical equation correlating the relationship between the removal of Cr3+ and the adsorption time was determined.  相似文献   

14.
The present paper investigates the adsorption of Cr(III) ions using the SIR, prepared by impregnation of Amberlite XAD7 with di-(2-ethylhexyl)-phosphoric acid (DEHPA), which has been chosen as an extractant for the purpose of this study. The Amberlite XAD7–DEHPA resin was impregnated with DEHPA and ethylic alcohol as solvent trough dynamic column impregnation method. The influence of different physicochemical parameters (pH, resin dosage, initial concentration of Cr(III) ions, contact time and temperature) upon the adsorption capacity of XAD7–DEHPA, in the Cr(III) ions removal process from aqueous solution, has been investigated. The pH for Cr(III) ions adsorption was found as 3.0 for this material. The results showed that the adsorption equilibrium was reached after 45 min. The adsorption process is best described by the pseudo-second order kinetic model. Langmuir adsorption isotherm gave a satisfactory fit of the equilibrium data. The maximum adsorption capacity is ∼3 mg Cr(III) ions/g SIR. The thermodynamic studies allowed us to determine the thermodynamic parameters ΔG°, ΔH° and ΔS°. In this paper the factorial design of experiments was used to study the performance of the adsorption process.  相似文献   

15.
Tülin Banu ?yim 《Desalination》2009,249(3):1377-182
Adsorption properties of natural clay (from Eski?ehir of Turkey) were investigated by depending on different adsorption conditions such as different initial dye concentrations and contact times. The chemical composition of the natural clay was analyzed by X-ray fluorescence spectrometry (XRF). The removal of basic dyes such as Nile Blue (NB) and Brilliant Cresyl Blue (BCB) from aqueous solutions using natural clay in this study was described. After the equilibrium adsorption time of 8 h, the adsorption capacities for NB and BCB reach about 25 mg/g and 42 mg/g, respectively. Lagergren kinetic equation was used to test the experimental data to examine the controlling mechanism of adsorption processes. Adsorption data of the BCB and NB onto natural clay were fitted well by the pseudo-first-order model. The adsorption isotherms data were correlated with the Freundlich equation and the Freundlich constants Kf (mg/g) and n (intensity of adsorption) were calculated. The r2 (regression coefficients) values were 0.9835 and 0.9849 for NB and BCB, respectively. The adsorption capacities of natural clay for NB and BCB have the following order: BCB > NB.  相似文献   

16.
A series of BaHoxFe16−xO27 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) W-type hexagonal ferrites were prepared by co-precipitation technique at high annealing temperature of 1320 °C. XRD reveals single W-type hexagonal phase in these ferrites. The grain size is measured by SEM analysis using line intercept method. Saturation magnetization, retentivity and coercivity were measured from MH-loops taken on VSM. It was observed that magnetization increases with the increase of Ho content due to difference in ionic radii of Ho3+ (0.901 Å) and Fe3+ (0.67 Å) ions. Room temperature dc resistivity increases as a function of Ho3+ that may be due to separation between grains. The dc electrical resistivity decreases as a function of temperature which indicates the semi-conducting behavior of the samples.  相似文献   

17.
A novel hybrid material silica gel chemically modified by diethylenetriaminemethylenephosphonic acid GH-D-P has been developed and characterized. The results of the adsorption thermodynamics and kinetics of the as-synthesized GH-D-P for Au(III) showed that this high efficient inorganic–organic hybrid adsorbent had good adsorption capacity for Au(III), and the best interpretation for the experimental data was given by the Langmuir isotherm equation, the maximum adsorption capacity for Au(III) is 357.14 mg/g at 35 °C. Moreover, the study indicated the adsorption kinetics of GH-D-P could be modeled by the pseudo-second-order rate equation wonderfully, and the adsorption thermodynamic parameters ΔG, ΔH and ΔS were −20.43 kJ mol−1, 9.17 kJ mol−1, and 96.24 J K−1 mol−1, respectively. Therefore, the high adsorption capacity make this hybrid material have significant potential for Au(III) uptake from aqueous solutions using adsorption method.  相似文献   

18.
19.
N. Karapinar 《Desalination》2009,249(1):123-129
The adsorption behaviour of Cu2+ and Cd2+ onto bentonite was studied as a function of temperature under optimized conditions of amount of adsorbent, particle size, pH, concentration of metals, and shaking time. The adsorption patterns of metal ions onto followed the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. This included adsorption isotherms of single-metal solutions at 298-333 K by batch experiments. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnKo vs. 1 / T plots. The adsorptions were endothermic reactions. The results suggested that natural bentonite was suitable as sorbent material for the recovery and adsorption of metal ions from aqueous solutions.  相似文献   

20.
This paper deals with experimental investigations related to removal of iron and manganese from simulated contaminated groundwater via ozone technology. Ozone as a powerful oxidizing agent, which was used in this study to oxidize iron and manganese converting ferrous ions (Fe2+) iron to ferric state (Fe3+) and (Mn2+) to (Mn4+) state, the oxidized salts will precipitate as ferric hydroxide and manganese oxide, that to reach the concentrations of these pollutants under their limit values in drinking water. The initial concentrations of (Fe2+) and (Mn2+) in synthetic water sample under study were 2.6 mg/l and 1 mg/l respectively. The effects of ozone dose concentration, operating temperature, and pH on the percentage removal of (Fe2+) and (Mn2+) have been discussed. For optimum removal of iron and manganese species the ozone dose has been noted as 3 mg/l at optimum temperature of 20 °C which improved removal of (Fe2+) and (Mn2+) to more than 96% and 83% respectively. The removal percentage of both metals was also affected by changing pH with the range of 5-12; where the maximum removal of iron and manganese was observed in pH (9-10). Experiments also studied the effects of coagulant type and bicarbonate concentration in raw water, as a result it was found that the optimum concentrations of coagulant was a mixture of 30 mg/l of aluminum sulfate with 10 mg/l of lime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号