首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(6):1488-1506
Abstract

Humic substances‐heavy metals complexation combined with membrane filtration is reported. The effects of salinity, humic substances (HS) concentration, heavy metals concentration, and trans‐membrane pressure (TMP) on HS and heavy metals retention using two membranes are studied. Membrane fouling is also studied at the aforementioned conditions. NF270 experienced higher fouling. Moreover, salinity tests showed increasing fouling rate and reduction in membrane retention with increasing salinity level. While increasing HS concentration reduced HS retention and increased heavy metals retention and membrane fouling. Heavy metals concentration reduced the NF270 HS retention, but did not affect the P005F HS retention. In addition, TMP did not affect HS and heavy metals retention nor NF270 fouling, but increased P005F fouling.  相似文献   

2.
One of the critical issues for the successful application of ultrafitration in water treatment is membrane fouling due to dissolved organic matter, which negatively affects productivity, product quality and process cost. The aim of the present study is to contribute to the understanding of fouling phenomena by organic matter and the efficiency of the backwashing technique, which is applied in practice to restore membrane flux. In this experimental study commercial humic acid and sodium alginate have been used as model substances representative of natural organic matter and extracellular organic matter, respectively. All fouling experiments were carried out in a special single fiber apparatus. An important parameter considered in the study of both model substances is the concentration of calcium ions, which promote their aggregation and influence the rate of flux decline, the reversibility of fouling and rejection. Membrane fouling by humic acid appears to be the outcome of simultaneous action of several fouling mechanisms. Initially, a relatively rapid irreversible fouling takes place due to internal pore adsorption; however, progressively pore blocking becomes important and a fouling layer develops on the membrane. Sodium alginate fouling on the other hand is apparently due to two consecutive mechanisms; i.e. a rapid irreversible fouling due to internal pore constriction, followed by cake development on the membrane surface which becomes the dominant mechanism. Comparing fouling in both cases it can be inferred that even though sodium alginate fouling is more severe than the one caused by humic acids, it is to a large extent reversible by backwashing. On the contrary, fouling caused by humic acid is characterized by greater and increasing with calcium addition irreversibility, which is not remedied by the periodic backwashing. The different fouling propensity of the two types of macromolecules is apparently due to differences of their physical–chemical characteristics.  相似文献   

3.
We investigated the effect of organic or inorganic materials on membrane fouling in advanced drinking water treatment by hybrid module packed with granular activated carbon (GAC) outside a tubular ceramic microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in the natural water source, synthetic water was prepared with humic acid and kaolin. Concentrations of kaolin or humic acid were changed to see effects of inorganic or organic matter. And periodic water-back-flushing using permeate water was performed during 10 sec per filtration of 10 min. As a result, both the resistance of membrane fouling (R f ) and permeate flux (J) were influenced higher by concentration of humic acid rather than kaolin. It was proved that NOM like humic acid could be a more important factor on membrane fouling in drinking water treatment than fine inorganic particles. Treatment efficiencies of turbidity and UV254 absorbance were very high above 97.4% and 92.0%, respectively. This article is dedicated to Professor Chang Kyun Choi for celebrating his retirement from the School of Chemical and Biological Engineering, Seoul National University.  相似文献   

4.
Humic acid fouling in the membrane distillation process   总被引:1,自引:0,他引:1  
This work investigates the extent of humic acid fouling during the membrane distillation process for water treatment. The effects of pH, ionic strength, and divalent ion on fouling were studied. The experiments were performed with a 0.22-μm PVDF flat-sheet membrane in a direct contact membrane distillation unit. Flux declines were negligible (less than 6%) for the ranges of humic acid concentration, ionic strength, and pH studied. The examination of the membrane surface by SEM revealed a thin deposit layer. The addition of divalent cations (Ca2+) into the solution considerably reduced flux when Ca2+ concentration exceeded the critical coagulation concentration. Ca2+ affected flux by forming complexes with humic acids and resulted in coagulation on the membrane surface. The normalized flux, J/J0, was 0.57 after 18 h of operation when the CaCl2 concentration was 3.775 mM. However, the deposit of humic acid coagulate on the membrane surface was loosely packed, and was rather easily removed. Rinsing of the fouled membrane with clean water and a 0.1 M NaOH solution gave 100% of flux recovery.  相似文献   

5.
Fouling characteristics of membranes with various molecular weight cut-offs (MWCO) were investigated. The effects of the molecular weights (MW) of humic acids and pre-treatment with PAC on membrane fouling were studied. It was found that the hydraulic resistance caused by fouling materials calculated using cake resistance in series model is a better indicator than the percentage of flux decline to assess the fouling of membranes with various MWCO. The effects of MWCO of membranes and MW of humic acids on membrane fouling can be explained by the different types of fouling mechanisms.  相似文献   

6.
The objectives of this research were to investigate the combined and individual influence of hydrophobic and hydrophilic fractions of NOM on the fouling of thin-film composite nanofiltration (NF) membranes, and also the roles of solution chemistry on the permeate flux and fouling. Combined fouling is compared to the individual fouling behaviors (i.e., alginate or humic acid alone).Experiments were conducted using a “cross-flow” pilot-scale membrane unit with a full circulation mode. Fouling experiments were performed with individual and combined humic acid and alginate.The results demonstrated that increasing organic concentration increased greatly the rate and extent of flux reduction. Individual alginate fouling was more detrimental than individual humic acid fouling, and alginate exhibited greater flux decline than humic acid fouling alone at the same conditions. A higher flux decline was observed with increasing proportions of aliginate in combined fouling. In other word, there are antagonistic effects during combined fouling because the charge functional groups of two above foulants are negative and increase electrostatic repulsion between two foulants and also foulant-membrane. The flux reduction increased with increasing ionic strength, foulant concentrations, and with lower pH. This observation implies the importance of interaction between various foulants for deeper understanding of fouling phenomena. The membrane fouling was largely dependent on organic properties and fractions.  相似文献   

7.
Charge neutralisation plays a major role in heavy metal and humic substance removal in water treatment. Humic substances have no readily identifiable structure and they consist of anionic macromolecules of low to moderate molecular weight. Humic substances are easily coagulated using cationic metals and polyelectrolytes. Different concentrations of humic substances have been coagulated with different concentrations of heavy metals and/or polyelectrolytes. The charge neutralisation was determined using U.V. spectrophotometer. Humic substance removal increased with increasing salinity level until reaching a point where HS destabilization is considered complete and salinity no longer play a role in HS removal. Humic substance removal increased with increasing heavy metals concentration and precipitation was experienced at high concentrations of heavy metals (15–20 mg/L) and low concentration of humic substances (10 mg/L). In addition, HS removal also increased with increasing polyelectrolyte concentration. Diallydimethylammonium chloride (PDADMAC) polyelectrolyte was more effective in humic substance coagulation compared to copolymer of dimethyl aminoethyl acrylate (CoAA). The addition of heavy metals in polyelectrolyte coagulation increased humic substance removal due to the combined charge neutralization of the metals and polyelectrolytes.  相似文献   

8.
Membrane fouling is often considered as a hindrance for the application of microfiltration/ultrafiltration(MF/UF) for drinking water production. A novel process of photocatalytic membrane reactor/dynamic membrane(PMR/DM), operating in a continuous mode under sub-critical flux, was proposed for the mitigation of membrane fouling caused by humic acids(HAs) in water. The mechanism of membrane fouling alleviation with synergistic photocatalytic oxidation and dynamic layer isolating effect was comprehensively investigated from the characterization of foulant evolution responsible for the reversible and irreversible fouling. The results showed that the PMR/DM utilized photocatalytic oxidation to enhance the porosity and hydrophilicity of the fouling layer by converting the high molecular weight(MW) and hydrophobic HA molecules with carboxylic functional groups and aromatic structures into low-MW hydrophilic or transphilic fractions, including tryptophan-like or fulvic-like substances. The fouling layer formed in the PMR/DM by combination of photocatalytic oxidation and DM running at a sub-critical flux of 100 Láhà1ámà2, was more hydrophilic and more porous, resulting in the lowest trans-membrane pressure(TMP) growth rates, as compared to the processes of ceramic membrane(CM), DM and PMR/CM.Meanwhile, the dynamic layer prevented the foulants, particularly the high-MW hydrophobic fractions,from contacting the primary membrane, which enabled the membrane permeability to be restored easily.  相似文献   

9.
In this study, polysulfone (PSF) hollow fiber membranes with enhanced performance for humic acid removal were prepared from a dope solution containing PSF/DMAc/PVP/TiO2. The main reason for adding titanium oxide during dope solution preparation was to enhance the antifouling properties of membranes prepared. In the spinning process, air gap distance was varied in order to produce different properties of the hollow fiber membranes. Characterizations were conducted to determine membrane properties such as pure water flux, molecular weight cut off (MWCO), humic acid (HA) rejection and resistance to fouling tendency. The results indicated that the pure water flux and MWCO of membranes increased with an increase in air gap distance while HA retention decreased significantly with increasing air gap. Due to this, it is found that the PSF/TiO2 membrane spun at zero air gap was the best amongst the membranes produced and demonstrated > 90% HA rejection. Analytical results from FESEM and AFM also provided supporting evidence to the experimental results obtained. Based on the anti-fouling performance investigation, it was found that membranes with the addition of TiO2 were excellent in mitigating fouling particularly in reducing the fouling resistances due to concentration polarization, cake layer formation and absorption.  相似文献   

10.
Fouling of membranes by colloidal organic and inorganic particles continues to be documented as the most common and challenging obstacle in attaining stable continuous operation of reverse osmosis (RO) and ultrafiltration (UF) systems. Much current research is being conducted on physical parameters to mitigate such fouling. The focus has been on membrane synthesis and element design; microfiltration and ultrafiltration pretreatment; electromagnetic devices; correlation with physical factors such as Silt Density Index, zeta potential and critical flux; technique of direct observation of fouling process through a membrane; and classification of macromolecular organics for correlation with fouling characteristics. We report initial successes with chemical control of colloidal fouling. Through screening with a large number of observable coagulations of natural colloids, we have developed a group of proprietary anticoagulants and dispersants that would, at less than 10 ppm dosage to the RO feedwater, control various classes of colloidal foulants. Case studies of the control of humic matter, elemental sulfur and colloidal silicate in problematic RO systems that became stabilized are briefly presented. We conclude that a great need and potential exists in economically controlling the myriads of fouling interactions of colloidal particles during concentration within the brine channels of RO membrane elements. Low dosages of antifoulants can in many cases obviate the need for installation and maintenance of pretreatment unit or operations designed to remove such colloidal foulants from the process stream.  相似文献   

11.
Two types of bisphenol monomers, Bisphenol A (BPA) and Tetramethyl Bisphenol A (TMBPA), with different concentrations of bisphenol aqueous solution (0.5% to 2.%w/v) and various interfacial polymerisation times (10 s, 30 s and 60 s) in the fixed 0.15%w/v organic solution of trimesoyl chloride (TMC)-hexane were studied. Irreversible fouling of both unmodified polyethersulfone NFPES10 and modified polyester thin-film composite polyethersulfone membranes were studied using humic acid model solutions at two different pH values, pH 7 and pH 3. It was observed that polyester thin-film composite membranes prepared by BPA exhibited fewer tendencies for irreversible fouling by humic acid molecules at neutral environment compared to unmodified NFPES10 and TMBPA-polyester series. This is most probably due to high electrostatic repulsion force between negatively charged of BPA-polyester layer and highly negative charged of humic acid at pH7. However, some modified membranes with rougher surfaces were severely fouled by humic acid molecules at acidic environment, pH 3. Under this acidic environment, carboxylic acid groups of humic acid lost their charge and the macromolecules of humic acid have smaller macromolecular configuration due to the increased hydrophobicity and reduced inter-chain electrostatic repulsion. Thus the molecules of humic acid may be preferentially accumulated at the valleys of the rougher membrane surface blocking them and resulting in a more severe fouling. In addition, the modification also affected membrane pore size and pore size distribution as shown by AFM images. It was also observed that the smaller pore size generated after modification does not have significant effect on humic acid removal due to the larger size of humic acid molecules. All the modified membranes posses smaller pore size than the unmodified NFPES10 (1.47 nm) in the range of 0.8–1.34 nm.  相似文献   

12.
Membrane fouling is a major problem, which extent depends on the respective natures of the solute and membrane material. Membrane surface characterization under different fouling conditions may help in understanding the fouling mechanism. Such characterization was performed for the case of humic substances filtered on two nanofiltration membranes, using special contact angles measurements. The measured contact angles allowed the calculation of polar and non-polar contributions to the surface energy of dry, hydrated and fouled membranes. The results reveal significant differences in the two membrane behaviours and information about the way that fouling material may be adsorbed on membrane surface.  相似文献   

13.
Natural surface waters in Algarve, Portugal, have important seasonal variations in natural organic matter (NOM) content, that influences ultrafiltration (UF) performance. This paper addresses the evaluation of the pH adjustment for seasonal control of UF fouling at a laboratory scale, using a plate and frame polysulphone membrane of 47 kDa MWCO. Results of two types of natural water (clear water, 3-5 NTU, and turbid water, 33-34.6 NTU) and three different water pH values (acid, neutral and basic) demonstrated that the pH adjustment could be used for seasonal control of UF fouling: when the water has less NOM (in dry periods, clear water), the acid pH will improve the UF performance, while during and after intense rainfall periods (turbid water with high NOM concentration) basic pH will be advantageous, because it minimizes membrane fouling. This behaviour is explained for clear water in terms of charge effects on membrane size. For turbid water, the electrostatic repulsion between membrane surface and NOM and turbidity particles is reduced at pH 4.13 and protonation of the NOM functional groups decreases the hydrodynamic radii of humic substances while increasing their hydrophobicity and their tendency to adsorb. Therefore, a dense fouling layer develops and flux is lower at pH 4.13 than at pH 8.33. These results together with the observed raw water feed concentrations decline and rejection decrease with WRR confirm the extensive adsorption on the membrane enhanced by the moderate hardness cation of this water.  相似文献   

14.
为考察水体中天然有机物(NOM)对纳滤膜性能产生的影响,以腐殖酸(HA)、牛血清蛋白(BSA)和海藻酸钠(SA)分别模拟水中常见NOM,腐殖质、蛋白质和多糖,对国产NF-1812纳滤膜进行单组分及其混合物定性定量有机污染及清洗实验。结果表明,有机污染造成膜通量下降,膜污染程度为SA>HA>BSA;NOM截留率可稳定在99.2%~99.6%;膜污染阻力主要为浓差极化阻力,其次是凝胶层阻力和内部污染阻力,有机污染液综合黏度和综合含量越大,浓差极化阻力的比例越高;对多组分有机污染膜进行错流速度9 cm/s的物理水力清洗和pH=10.0的质量分数分别为0.1%的NaOH+0.025%Na-SDS化学药剂清洗,膜通量、NOM截留率、苦咸水截留率、SEM成像均恢复至原膜状态,纳滤膜清洗效果良好,适用于中国西北苦咸水地区。  相似文献   

15.
Many ultrafiltration-related studies have emphasized fouling mechanisms, but few works have been done on resistance modeling. This study investigated the temporal variation of different resistances including membrane intrinsic resistance, fouling resistance, and concentration polarization resistance, based on a well established resistance--in-series model. The various resistances were determined at an early stage of ultrafiltration operation. During the initial operation period, the total filtration resistance for ultrafiltration of humic substance solution ranged from 1.9×109 to 2.2×109Pa·/m. The principal resistance of ultrafiltration is from intrinsic membrane resistance, accounting for more than half of the total resistance (56-85%).  相似文献   

16.
超滤是一种高效的水处理技术,近年来被广泛应用于工业废水处理、生活污水回用、海水淡化预处理等领域。然而,超滤长期运行会造成膜污染。本文采用了在线混凝结合超滤工艺,使用不同形态的铝系混凝剂(硫酸铝、氯化铝或聚合氯化铝),处理含有不同溶解性有机质组分(腐殖酸、牛血清白蛋白和高岭土)的模拟原水,研究不同铝形态、不同组分及其相互作用对超滤膜污染过程的影响。本研究建立了流量衰减模型模拟膜污染过程,结合衰减全反射红外光谱(IR-ATR)和多变量曲线分辨-交替最小二乘法(MCR-ALS)的数据处理方法对膜上的多种污染物进行定性和定量分析。结果表明硫酸铝和氯化铝混凝剂均可明显提高膜比通量,减缓膜污染。该工艺混凝剂投加量低于常规处理工艺即可明显减缓膜污染。混凝剂投加量为0.4mg/L时,氯化铝混凝效果较好,混凝剂投加量为2.4mg/L时,硫酸铝混凝效果较好。低投加量(0.2mg/L、0.4mg/L)下,PAC对缓解膜污染程度不明显,反而加重膜污染。牛血清白蛋白对超滤膜的污染比腐殖酸严重。因为牛血清白蛋白的存在大大降低了混凝的效果,阻碍疏松滤饼层的形成。向原水中投加硫酸铝混凝剂,膜污染主要发生在过滤前期,即...  相似文献   

17.
水中天然有机物对超滤膜污染研究   总被引:4,自引:1,他引:3  
对超滤膜受天然有机物污染的特性进行研究,同时考查无机矿物质成分对污染的协同影响。采用PES平板膜进行膜污染试验,模拟地表水研究腐殖酸以及钙离子的影响并进行了化学清洗试验。研究结果表明,在pH值为7.8,腐殖酸质量浓度为15 mg/L,操作压力0.1 MPa下,当钙离子浓度为4 mmol/L时,膜污染最为严重,10 min后膜通量降到起始膜通量的60%以下。先用0.1 mol/L的NaOH,再用0.5%的盐酸清洗后,膜通量可恢复至起始膜通量的98%。  相似文献   

18.
研究了附加电场超滤膜工艺去除水中有机污染物的性能,结果表明:原水中的腐殖酸在电场中发生电泳迁移,减少了向膜表面的移动,同时发生凝聚现象,沉积在膜表面形成疏松的滤饼层,有效减缓了膜污染。附加电场后对腐殖酸和4-MBC的去除率均有很大提高。同时发现,吸附是大孔径低压膜去除小分子4-MBC的主要作用,水中腐殖酸的存在对超滤去除4-MBC有很大的促进作用。  相似文献   

19.
An analysis of fouling material and the effects of chemical cleaning were examined for a reverse osmosis (RO) membrane, which was used for the treatment of wastewater from a rolling mill process in the steel industry. The bulk foulant accumulated in the membrane module consisted mainly of CaSO4·2H2O, and the organic contaminants were contained at a very low level. The test pieces obtained from the exhausted RO membrane module (spiral-wound type) were used to examine chemical cleaning with the following solutions: acid and alkaline solutions with EDTA added, 50% methanol, and 10% ethyleneglycol monobutyrate (EGMB). Although a major component of the fouling material was calcium salt, the acid or alkaline solution containing EDTA did not promote the effective recovery of the water flux. On the other hand, cleaning with 50% methanol or 10% EGME solution increased the water flux significantly. The atomic force microscopy images of the membrane surface indicated that relatively large particles accumulated at the surface of the fouled membranes, and the large particles remained even after acid or alkaline cleaning. In the case of EGMB cleaning after alkaline cleaning, large particles did not remain, and uniform and fine particles were observed. The results that calcium salt, a major fouling material, was not removed effectively with the acid and alkaline solution may be due to trace organic materials in the fouling layer that act as a binder for inorganic fouling materials.  相似文献   

20.
ZnO nanoparticles were prepared through the chemical precipitation method and immobilized on glass plates. The effects of initial pH, UV lamp power, glass surface area, and initial humic substances (HS) concentration on the photocatalysis of HS were studied. Acidic conditions favoured the photocatalysis of HS. The degradation efficiency of HS was enhanced by increasing the UV lamp power and glass surface area. According to the results of total organic carbon (TOC) analysis, a mineralization efficiency of 59.3% was obtained within a reaction time of 120 min in comparison with the removal efficiency (%) of UV254, which was found to be 83.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号