首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
用自主研发的In-48Sn-1Ag新型无铅钎料对镀镍后体积分数为15%的SiCp/6063Al复合材料进行真空钎焊.钎焊温度为180、185、190、195、200℃,保温时间为15、20、25、30 min.通过扫描电镜(SEM)、能谱仪(EDS)、物相分析(XRD)及抗剪切强度测试等手段对钎料合金及钎焊接头的组织和性能进行分析.结果表明:钎料合金中主要存在In?Sn4、AgIn2、In3Sn相.接头剪切强度随钎焊温度和保温时间增加先增后降,当钎焊温度为190℃,保温时间为20 min时,钎焊接头的剪切强度最高,达16.61 MPa,此时钎料与复合材料表面的镍层结合最好,断口形貌以脆性断裂为主的脆-韧共存混合断裂.  相似文献   

2.
用PbO-SiO2-Al2O3系复合片状玻璃钎料,在大气环境下实现SiCp/6063Al复合材料与DM305电子玻璃的连接.用XRD、SEM、EDS和DSC等研究不同保温时间和温度下对焊接接头的影响.结果表明:在一定范围内焊接温度升高和保温时间延长可提高接头强度.SiCp/6063Al复合材料与DM305电子玻璃在钎焊温度为480℃保温30 min时,获得最大剪切强度为7.16 MPa的接头,且满足气密性使用要求.钎焊过程中,钎料中的元素能扩散到母材中,提高接头强度.  相似文献   

3.
采用真空甩带方法制备厚为(30~80)μm的Al-20.0Cu-1.0Mg-5.0Si-0.4Ce箔状钎料,用于镀镍高硅铝合金的真空钎焊研究。通过对钎焊接头显微组织、剪切强度等的观察和分析,得到钎焊温度对接头性能的影响规律。结果表明:镀镍高硅铝合金用研制的钎料在真空钎焊条件下可获得致密的接头组织,钎料在镀镍高硅铝表面的润湿铺展性良好。在钎焊温度为530℃、保温30 min的钎焊工艺下,接头的剪切强度值最高,为49.35 MPa。钎料中的部分元素和母材表面的镀Ni层发生化学反应,钎料和母材间形成冶金结合。  相似文献   

4.
研究Cu对Sn9Zn-1Al2O3-xCu(x=0,1.5,4.5,6.0)(质量分数,下同)复合钎料钎焊6061铝合金的影响,用扫描电子显微镜、X射线衍射仪、X射线能谱分析、维氏硬度计、万能试验机等,对钎料润湿行为、钎焊接头界面组织形貌、接头显微硬度、接头抗剪切强度和断口形貌进行研究,用第一性原理计算界面结构和界面差分电荷密度.结果表明:当Cu的质量分数为4.5%时,大量细小Cu5Zn8相出现在钎料中,Al4Cu3Zn界面固溶层最薄最平坦;相比Sn9Zn-1Al2O3,Sn9Zn-1Al2O3-4.5Cu钎料对6061铝合金的润湿面积提高27.18%;钎料和固溶层硬度分别提高31.05%和28.14%;接头抗剪切强度提高75.6%,抗剪切强度的提高是由于Cu5Zn8相的第二相增强作用;第一性原理计算显示,Sn9Zn-4.5Cu/Al2O3的界面结合更紧密;Sn9Zn-1Al2O3-4.5Cu钎料对6061铝合金的润湿性和钎焊性较佳.  相似文献   

5.
采用真空钎焊方法研究钎焊温度对SiC_p/Al复合材料钎焊接头组织性能的影响。选用Al-Cu-Mg系钎料,添加一定量的Ni元素,通过分析钎料金相和测量断裂应变值选择最优钎料,比较不同钎焊温度下接头的金相组织,并对接头的剪切强度进行测试分析。结果表明:当Ni质量分数为3%时,钎料的断裂应变值最高、塑韧性最好,相应的甩带成型性能最好;当钎焊温度从560℃升高到600℃时,SiC_p/Al复合材料接头的剪切强度随温度的升高先增加后降低,在最佳钎焊温度为570℃、保温30 min时,接头剪切强度达到最大值,为40.49 MPa;当钎焊温度超过570℃时,随着钎焊温度的升高,钎料层中金属元素的合金反应加剧,生成的金属间化合物会残留在焊缝中并与周边增强相之间形成弱连接,降低接头强度。  相似文献   

6.
针对高硅铝与可伐合金的异种材料焊接,采用真空钎焊方法探索温度对焊缝质量的影响。钎焊温度从560℃升高到600℃保温时间30 min,试验所用钎料为自制Al基钎料。结果表明:Al基复合材料接头的剪切强度随温度的升高而增加。在5个焊接温度下得到的焊接接头质量相差较大;焊接温度为560℃时接头剪切强度最低为9.5 MPa,焊接温度600℃时接头强度最高为94.6 MPa,焊接温度为560、570、580℃时断口为韧性断裂;焊接温度为590、600℃时断口为脆性断裂;随温度升高,钎料中的元素很好扩散到母材中,并且与母材中元素生成某些增强相,起到强化作用。  相似文献   

7.
用Cu41.83Ti30.21Zr19.76Ni8.19非晶钎料对Ti-48Al-2Cr-2Nb合金进行真空钎焊连接,利用扫描电镜、能谱仪、X射线衍射以及万能试验机研究接头的显微组织和力学性能。结果表明:在钎焊温度为880、940、970℃,保温时间为600 s下实现了TiAl合金连接,钎缝主要由Ti2Al、AlCuTi、(Ti,Zr)2(Cu,Ni)和α-Ti组成;在一定的保温时间下,增加钎焊温度会导致接头剪切强度先增大后减小;当钎焊温度为940℃、保温时间为600 s,接头的剪切强度达到最大值,为266 MPa。反应层厚度影响接头剪切强度,为更好地控制反应层厚度,建立界面反应层生长动力学方程。  相似文献   

8.
采用自制Sn-3.0Ag-0.5Cu-3.0Bi合金对Si CP/6063Al复合材料进行真空钎焊。通过SEM、EDX实验方法分析钎料与化学镀镍后Si CP/6063Al复合材料真空钎焊接头的显微组织。结果表明:无铅钎料Sn-3.0Ag-0.5Cu-3.0Bi合金显微组织主要由富Sn相、共晶组织和单质Bi构成;其显微组织形成机制可以用化学亲和力来表征,元素间的化学亲和力参数越大,越容易形成化合物;Si Cp/6063Al复合材料真空钎焊后的焊缝组织致密,钎料对镀镍复合材料的润湿性良好;界面生成的IMC为(CuxNi1-x)6Sn5,其晶体结构与Cu6Sn5相似,只是部分Cu原子被Ni取代。  相似文献   

9.
采用Zn-Al钎料实现了TC4钛合金和55%SiCp/Al复合材料的非真空刮涂钎焊。借助扫描电镜和能谱分析等测试手段,分析了接头的显微组织结构。借助电子万能试验机对接头的剪切强度进行了测试。结果表明:接头中复合材料侧界面氧化膜完全消失;当焊接保温时间为5 min,复合材料中的SiC颗粒向钎缝中少量迁移;当焊接保温时间为20 min,复合材料中两种尺寸为10、50μm的SiC颗粒大量向钎缝中迁移;在钛合金侧表面只生成了一种金属间化合物TiAl3相,平均厚为2~10μm;剪切强度测试时试样接头均断裂于钎缝中,最高剪切强度可达163 MPa。  相似文献   

10.
采用Ti-28Ni钎料对Ti-6Al-3Sn-3.5Zr-0.4Mo-0.75Nb-0.35Si+5%Ti C(体积分数)Ti基复合材料(TMC)进行真空钎焊连接,结合能谱及X射线衍射结果分析接头反应机理,并对钎焊接头显微组织及力学性能进行系统研究。结果表明:在钎焊温度为1 010℃,保温时间为10、20、30 min时,接头组织形貌均匀致密,未发现孔洞、裂纹等缺陷;钎缝主要由Ti2Ni、α-Ti和Ti C颗粒相组成,钎缝内元素扩散良好;在钎焊温度为1 010℃、保温20 min时,接头室温剪切强度高达659MPa,接头剪切断口分析表明断裂方式为准解理断裂。  相似文献   

11.
为研究钎焊温度对接头组织和剪切强度的影响,用Ag-28Cu钎料对ZrB_2-SiC陶瓷与Inconel 600镍基合金进行真空钎焊。结果表明:用Ag-28Cu钎料可获得良好的钎焊接头,接头无明显缺陷;焊缝主要由Ag_(ss)、Cu_(ss)和(Cr,Fe)_7C_3组成;随钎焊温度的增加,剪切强度不断提高;当钎焊温度为840℃、保温5 min时,获得的接头具有最优剪切强度,达到86.6MPa。  相似文献   

12.
用Al-12Si-20Cu-1Mg-1Ni合金为钎料,对质量分数为55%的SiCp/ZL102复合材料进行真空钎焊,钎焊温度为560、570、580、590、600℃,保温时间为30 min。对不同温度下焊接接头的显微组织、维氏硬度、抗剪切强度、断口形貌进行分析。结果表明:随着钎焊温度增加,接头的剪切强度先增后降,焊接温度为590℃时,钎料与母材间的结合最好,焊缝中心与母材处的硬度值最大,为250.5HV和161.79HV,同时焊接接头的抗剪切强度达最大值60.4 MPa,焊接接头呈脆性断裂和韧性断裂共存的混合断裂形貌。  相似文献   

13.
SiC_p/101Al复合材料的氩气保护炉中钎焊   总被引:1,自引:0,他引:1  
对SiC颗粒增强铝基复合材料SiCp/101Al的氩气保护炉中钎焊工艺及机理进行研究。结果表明,通过优化钎焊工艺参数,获得接头的剪切强度最大值可达90MPa;进一步对钎焊接头进行金相组织观察和钎缝相结构组成分析,钎缝组织致密,未发现有气孔、夹杂和微裂纹等缺陷,钎料和母材之间合金元素存在明显的互扩散,并且母材中有部分SiC颗粒过渡到钎缝之中;接头断口扫描观察显示,接头整体呈现韧性断裂特征。对钎焊接头的强度问题进行讨论。  相似文献   

14.
采用Sn3.0Ag0.5Cu中间层对低体积比SiC_p/6063Al复合材料进行电阻点焊,通过剪切试验以及SEM、EDS和XRD分析Sn3.0Ag0.5Cu中间层和点焊工艺对点焊接头组织及性能的影响。结果表明:Sn3.0Ag0.5Cu作为中间层可有效与母材形成混合熔核,显著改善母材直接点焊后熔核中SiC颗粒偏聚现象,在点焊电压和时间分别为124 V、2.2 s时,接头剪切强度达到100.17 MPa,断裂主要发生在熔核及熔核边缘母材处,断裂形式是以韧性断裂为主的混合断裂。因此,Sn3.0Ag0.5Cu中间层可有效提高低体积比SiC_p/6063Al复合材料电阻点焊接头的结合强度。  相似文献   

15.
用自主研发的Sn-0.3Ag-0.7Cu-0.6Ga-0.8Sb低Ag无铅焊料对覆Ag玻璃基板进行真空封接。封接温度为270、280、290、300℃,保温时间为15、20、25、30 min。通过剪切强度测试、气密性测试、扫描电镜观察及EDS能谱分析对钢化真空玻璃封接接头的性能与组织进行分析。结果表明:封接接头依靠焊料合金中的Sn与Ag层中的Ag相互扩散形成冶金结合。封接接头剪切强度随封接温度上升、保温时间延长先增后降,封接温度为290℃、保温20 min时,接头剪切强度最高,为14.01 MPa,此时接头内部的IMC层组织厚度适中,分布均匀,接头断裂位置位于Ag层与玻璃结合部位,封接接头气密性在该封接工艺下达到最佳,为1×10-9Pa·m3/s。  相似文献   

16.
用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)和显微硬度计等分析ZL105铝合金和Mg真空固液复合结合区的显微组织、相组成、元素分布和显微硬度。结果表明:当温度为430℃、保温60 min时,得到的ZL105/Mg双金属材料缺陷少,结合区形成3个新相层,各层组织均匀、层间结合紧密、显微硬度趋势良好,最大硬度值为287.9HV;在结合区形成Al_3Mg_2和β-Mg17Al12两种金属间化合物,新相层中的A层为α-Mg枝晶和枝晶间连续网状分布的β-Mg17Al12共晶组织,B层为富Al的α等轴细晶,C层主要为铝基固溶体和Al_3Mg_2。  相似文献   

17.
采用TiCuZrNi非晶活性钎料对ZrB_2-SiC超高温陶瓷和Ti-6Al-4V合金在880℃钎焊温度下进行钎焊,通过扫描电子显微镜、能谱分析仪和X射线衍射仪对焊接接头界面的反应产物进行系统分析,结合加热、保温和冷却3个阶段深入分析接头形成的机制。结果表明:界面反应产物为β-Ti、(Ti,Zr)_2(Cu,Ni)、TiCu、Ti_2Cu、TiC、Ti5Si3、Ti B和Ti B2。基于扩散理论,建立陶瓷侧反应层生长规律的表达式。  相似文献   

18.
电场对AZ31B/Al扩散结合界面结构及力学性能的影响   总被引:1,自引:1,他引:0  
应用电场激活扩散连接技术(FADB)进行AZ31B与铝的固相连接,研究电场条件下结合界面快速形成的微观结构及其力学性能。采用OM、SEM、EDS及XRD等分析扩散溶解层的微观组织、成分分布和剪切断口形貌及相组成,并利用显微硬度计和微机控制电子万能试验机对接头界面扩散区显微硬度和接头抗剪强度进行分析。研究结果表明,激活电流降低扩散界面金属化合物生成的激活能,促进Mg-Al间的扩散反应,形成的梯度扩散溶解层对提高接头抗剪切强度有显著影响。在温度为450℃,时间为50 min,电流密度为80 A/cm2时,过渡层宽度达120μm,接头抗剪强度最大值35 MPa。  相似文献   

19.
利用真空电阻炉对T2紫铜和2A12硬铝进行真空扩散焊接,利用光学金相显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)和显微硬度计对结合区的组织形貌和成分以及显微硬度进行表征与测试,研究焊接工艺对T2/2A12双金属复合材料组织与性能的影响。结果表明:当扩散温度为700℃、保温60 min时,制备的T2/2A12复合材料结合区宏观界面清晰,未见明显焊接缺陷,出现Cu_3Al_2、Cu_9Al_4、Cu Al金属间化合物,金属间化合物对结合区的强化作用使其硬度显著升高;溶解层随扩散温度的升高和保温时间的延长而增厚,晶粒逐渐粗大,γ_2相在δ相区的溶解量增加。  相似文献   

20.
研究了氧化铝陶瓷与陶瓷及陶瓷与1cr18Ni9Ti不锈钢的钎焊,测量了接头剪切强度,分析了剪切断裂规律。结果表明,钎焊温度对陶瓷与陶瓷钎焊接头剪切强度有较大的影响。随着温度的增加,剪切强度先是增加,然后逐渐降低,在850℃时强度最高,为176Mpa。在850℃钎焊条件下,陶瓷与不锈钢钎焊接头强度为155Mpa,残余热应力对界面附近的陶瓷损伤较大。通过断口观察与分析,发现有四种断裂类型,各种断裂对应着不同的强度水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号