共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决7050高强铝合金在海洋环境中的腐蚀、磨损问题,设计了涂层结构以延长其使用寿命。采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入不同浓度的石墨烯添加剂,在7050高强铝合金表面制备含石墨烯的陶瓷膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、涂层附着力自动划痕仪以及电化学工作站,研究含石墨烯的MAO陶瓷膜层形貌、粗糙度、相组成和元素分布、结合力以及耐蚀性。结果表明:石墨烯添加剂的加入使得陶瓷膜层表面微孔尺寸降低、结构致密,且主要是由α-Al2O3、γ-Al2O3组成;当石墨烯添加剂浓度为10 g/L时,MAO陶瓷膜层粗糙度最低,为857.835 nm,且结合力最好,达到46 N;膜 层的腐蚀电位最大,腐蚀电流最小,耐腐蚀性最好。 相似文献
2.
介绍微弧氧化技术及其在典型镁合金构件上的应用现状,概述不同电解液体系与组分、氧化时间和电源类型与电参数等因素对耐蚀膜层结构和性能的影响研究进展,提出镁合金微弧氧化耐蚀膜层研究与应用过程中亟待解决的不足。 相似文献
3.
镁合金微弧氧化热力学和动力学分析 总被引:10,自引:0,他引:10
对镁合金微弧氧化过程中的热力学和动力学进行了计算和分析。结果表明,微弧氧化过程满足热力学条件,微弧氧化不是一个典型的形核长大过程。膜层是在不断击穿、生成、烧结、排泄堆积等过程中生长起来的,而且在反应过程中,膜层的生成是由反应电压、电流、电解液体系、pH值等各种工艺参数所控制的。 相似文献
4.
为直观地检验膜层的质量,建立微弧氧化工艺参数(电流大小、脉冲宽度、氧化时间)与微弧氧化膜层厚度之间的反向传播(BP)神经网络预测模型,其结构为3-10-1(即3个输入神经元,10个隐含层节点,1个输出神经元)。采用遗传算法(GA)优化BP神经网络的初始权值和阈值,构建基于遗传算法神经网络的膜厚预测模型。用GA-BP神经网络对膜厚进行模型仿真,并将仿真结果与BP神经网络模型仿真结果进行对比。结果表明,GA-BP网络模型预测值的平均误差为1.65%,最大误差为9.75%,而BP模型预测结果的平均误差为8.62%,最大误差为13.68%。GA-BP神经网络模型预测精度要优于BP神经网络模型。 相似文献
5.
采用以铝酸盐为主的碱性水溶液,对7075超高强度铝合金进行不同时间的微弧氧化表面处理,通过SEM和XRD对氧化陶瓷层的组织结构进行分析,研究不同微弧氧化时间对显微硬度、磨损性能和电化学性能的影响。结果表明:制备的陶瓷层致密,厚度大于50μm,与基体材料形成冶金结合;陶瓷膜层由γ-Al2O3和α-Al2O3两相组成,其中γ-Al2O3相含量较多,并且随着微弧氧化时间的延长,表面粗糙度增加,α-Al2O3相数量增加,陶瓷层具有高的显微硬度(1 423HV0.1),且抗蚀性和抗耐磨性能增强。 相似文献
6.
在含有EDTA-Ca和Na2HPO4的电解液中,以恒电流方式制备富含Ca和P的镁合金微弧氧化陶瓷膜,研究电流密度对陶瓷膜结构及耐蚀性的影响。利用涂层测厚仪、X-射线荧光光谱仪(XRF)、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)及电化学工作站对陶瓷膜厚度、元素组成、相组成、表面形貌及膜层在Hank溶液中的耐蚀性进行了测试。结果表明:随着电流密度的增加,膜层的厚度及 Ca/P 均呈现先增加后减小的趋势;膜层主要由 MgO 及 MgAl2O4组成,膜层中的Ca,P以非晶形式存在;陶瓷膜均呈现典型的微弧氧化形貌,随着电流密度的增加,孔径逐渐增大,分布逐渐趋于不均匀,甚至出现裂痕;电流密度为100 mA/cm2,MgAl2O4含量最高,膜层的耐蚀性最佳。 相似文献
7.
研究镁合金微弧氧化膜的表面层与致密层界面处的组织形态。在磷酸盐碱性电解液(5~20g/LNaH2PO4,1~5g/LNaOH,5~8g/LKF,0.5~2g/LNa3C6H5O7,0.5~2g/LEDTA)中,以AZ91镁合金为基体制备出微弧氧化陶瓷薄膜,制备时采用恒电流控制模式,电流密度为10~30A/dm2。采用透射电镜(TEM)和扫描电镜(SEM)研究氧化薄膜界面及附近区域的微观结构。结果表明:微弧氧化膜的表面层靠近表面层与致密层界面处的组织以微晶和纳米晶为主,含有少量非晶态物质;微弧氧化膜的表面层与致密层界面处的组织以非晶态物质为主;微弧氧化膜的致密层靠近表面层与致密层界面处的组织为混晶组织,主要为MgO晶粒,少量为MgAlO4晶粒,并含有少量非晶态物质。 相似文献
8.
铝合金微弧氧化陶瓷层的耐磨性能 总被引:9,自引:2,他引:9
用微弧氧化方法 ,在 LY1 2基体上制备了陶瓷层 ,对陶瓷层的组织结构和摩擦学行为进行了研究。结果表明 ,陶瓷层分为疏松层和致密层 ,膜基结合良好 ,致密层主要由 Al- Si- O和 Al2 O3相组成 ,其硬度高达 HV1 70 0以上 ,耐磨性能与硬质合金相当 相似文献
9.
在含有EDTA-Ca和Na2HPO4的电解液中,以恒电流方式制备富含Ca和P的镁合金微弧氧化陶瓷膜,研究电流密度对陶瓷膜结构及耐蚀性的影响。利用涂层测厚仪、X-射线荧光光谱仪(XRF)、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)及电化学工作站对陶瓷膜厚度、元素组成、相组成、表面形貌及膜层在Hank溶液中的耐蚀性进行了测试。结果表明:随着电流密度的增加,膜层的厚度及Ca/P均呈现先增加后减小的趋势;膜层主要由MgO及MgAl2O4组成,膜层中的Ca,P以非晶形式存在;陶瓷膜均呈现典型的微弧氧化形貌,随着电流密度的增加,孔径逐渐增大,分布逐渐趋于不均匀,甚至出现裂痕;电流密度为100 mA/cm2,MgAl2O4含量最高,膜层的耐蚀性最佳。 相似文献
10.
通过调节微弧氧化电解液中Na2Si O3和KOH浓度的配比,制备出厚达200μm以上的陶瓷氧化层,并对膜层进行厚度测量、SEM分析和硬度测试。结果表明:当Na2Si O3的质量浓度为5.5~6.0 g/L、KOH的质量浓度为1 g/L时,膜层厚可达260μm;陶瓷膜层颗粒和放电气孔尺寸均较小,膜层致密性良好;同时硬度可达1 500HV以上。 相似文献
11.
12.
在硅酸盐电解液体系中用不同极间距制备汽车用镁合金表面微弧氧化(MAO)层.对比不同极间距(40、120、200、280、360 mm)的涂层微观结构,设计电化学试验,分析极间距对涂层耐蚀性的影响.结果表明:将极间距增至200 mm,涂层表面平整,微孔较小,且均匀分布,缺陷数量低,致密度更高.MAO层由内部致密层与外部疏松层构成,致密层和基体结合层厚度较小.以不同极间距制备的涂层元素与物相成分基本一致.增大极间距后,涂层厚度降低,正面涂层厚度比反面大,在距离达到200 mm前,正反面涂层厚度相近.当距离达到200 mm时,腐蚀电流密度最小,涂层耐蚀性最优,涂层耐蚀能力可通过设定极间距调节. 相似文献
13.
研究AZ91镁合金在硅酸盐碱性电解液中的微弧氧化行为以及硅酸盐对微弧氧化膜层组织性能的影响,利用扫描电镜(SEM),X成膜过程,氧化膜的表面形貌、厚度、相结构和耐腐蚀性能都有重要的影响;随硅酸盐的质量浓度从5 g/L形成的膜层质量、厚度和耐腐蚀性能均先升后降,表面粗糙度先降后升;在本文的工艺条件下,质量浓度为10 g/L的硅酸盐电解液较有利微弧氧化膜层的生成。 相似文献
14.
采用微弧氧化技术在Al-Si合金表面制备氧化物陶瓷膜层,利用激光共聚焦显微镜、SEM、EDS、XRD、极化曲线等测试方法研究电流密度对Al-Si合金微弧氧化膜层的生长过程、微观结构、元素成分、相组成和耐蚀性的影响规律。结果表明:随电流密度的增大,起弧所需时间减短,膜层厚度和粗糙度均增加,膜层生长速率先增大后减小。电流密度较小时,氧化膜生成相为γ-Al_2O_3,当电流密度达到13.3 A/dm~2时,氧化物生成相出现α-Al_2O_3和莫来石相。当电流密度小于16.6 A/dm~2时,氧化膜的耐蚀性随电流密度增大而增强;当电流密度大于16.6 A/dm~2时,氧化膜耐蚀性能降低,相对于合金基体,氧化膜始钝电位降低,维钝电流密度降低两个数量级。 相似文献
15.
借助扫描电镜(SEM)、能谱分析(EDS)、X射线衍射仪(XRD)、显微硬度仪等分析手段和电化学实验研究了纳米ZnO颗粒对新型铸造铝合金表面生成的微弧氧化膜层的影响。结果表明,纳米ZnO颗粒参与了铝合金表面的微弧氧化成膜过程,陶瓷膜层的厚度、硬度和耐蚀性能均有明显提高。 相似文献
16.
添加剂对铝合金微弧氧化陶瓷涂层结构和耐磨性能的影响 总被引:9,自引:1,他引:9
研究了微弧氧化电解液中,加入无机盐(钨酸钠)和颗粒(SiC)添加剂,对铝合金表面微弧氧化陶瓷涂层结构及性能的影响.结果表明,钨酸钠添加剂的加入不仅抑制了陶瓷涂层中多孔层的形成,而且对于改善涂层相结构,提高陶瓷涂层耐磨性能也具有较为明显的作用;SiC颗粒能够进入陶瓷涂层,进一步改善了涂层的耐磨性. 相似文献
17.
18.
19.
利用SEM、EDS、XRD及导热系数测试仪研究不同厚度高硅铝合金微弧氧化膜层的结构特点及其导热性能,用数值分析方法优化最佳隔热性能膜层厚,并用热震试验研究膜层的耐热冲击性能。结果表明:随氧化膜厚度的增加,膜层莫来石相含量增加、致密性提高;膜层导热系数随膜厚的增加而增大,随环境温度的升高而减小;环境温度从298 K上升到623 K,氧化膜导热系数减少约70%,相对于基体合金降低2~3个数量级;膜层分别经60次空冷和水冷热震试验,表面均未出现肉眼可见的裂纹。 相似文献
20.
铝合金硅酸盐系微弧氧化陶瓷层形成机制的研究 总被引:4,自引:0,他引:4
选择硅酸盐系电解液,用微弧氧化方法在LY12基体上制备了陶瓷层。用扫描电镜、能谱仪等研究了不同氧化时间形成陶瓷层的成分分布和组织变化规律。结果表明:氧化初期,陶瓷层生长主要是疏松层的增厚过程;在60-180min的氧化中期,陶瓷层增厚包括了疏松层生长和致密层生长两个过程,前半段由疏松层向外生长为主,后半段以致密层向基体内部生长为主;氧化后期,两层的生长速率及层厚基本持平,陶瓷层生长速率明显降低。 相似文献