首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bing Na 《Polymer》2005,46(9):3190-3198
In this article, tensile properties have been discussed in terms of phase morphology, crystallinity and molecular orientation in the HDPE/iPP blends, prepared via dynamic packing injection molding, with aid of scanning electron microscopy (SEM), differential scanning calorimetry (DSC) as well as two dimensional X-ray scattering (2D WAXS). For the un-oriented blends, the tensile properties (tensile strength and modulus) are mainly dominated by the phase morphology and interfacial adhesion related to the influenced crystallization between HDPE and iPP component. A maximum in tensile strength and modulus is found at iPP content in the range of 70-80 v/v%. As for the oriented blends, however, the presence of dispersed phase in the blends, independent of phase morphology and crystallinity, always makes tensile properties to be deteriorated through reducing molecular orientation of matrix. It is molecular orientation of matrix that determines the tensile properties of oriented blends. In the blends with HDPE as matrix, steep decreasing of tensile properties is related to the rapid reducing of molecular orientation of HDPE, whereas in the blends with iPP as a major component, slight decreasing of molecular orientation of iPP results in slight reducing of tensile properties. Other factors, such as interfacial properties and phase morphology, seem to be little contribution to the modulus and tensile strength.  相似文献   

2.
Two random commercial ethylene-propylene copolymers (EPM) with different ethylene content have been added to binary isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends by melt mixing in a Brabender-like apparatus. Impact Izod tests and a morphological analysis on the fractured surfaces of broken specimens have been performed and discussed, in order to improve the deficiency in toughness of the binary HDPE/iPP mixtures. The results show that the impact performance of both homopolymers and HDPE/iPP binary blends is strongly improved by the addition of the EPM copolymers. Such an effect is related to the fact that the overall morphology, as well as the mechanism and mode of fracture, are greatly modified by the presence of such additives. The extent is dependent on factors such as the nature of the matrix (HDPE or iPP), the composition, and the chemical structure and/or the molecular mass of the added copolymer.  相似文献   

3.
The additive effects of the novel ethylene-propylene random (EP) copolymers with high isotacticity in propylene sequence on the morphology and mechanical properties of isotactic polypropylene (iPP) were investigated using polarized optical microscopy, transmission electron microscopy, dynamic mechanical analysis and tensile behavior. According to these results, the EP copolymers with a propylene content of more than 84 mol% were miscible with iPP, in which the crystallizable PP sequences in these EP copolymers were incorporated in crystal lattice of iPP and the other portions in the EP chains were excluded to the amorphous phases. Consequently, they act as tie molecules linking between adjacent lamellae, leading to enhancement of yield toughness of iPP. On the other hand, the EP copolymers with a propylene-unit content of less than 77 mol% were incompatible with iPP. The iPP/EP blends showed the phase-separated morphology.  相似文献   

4.
In this paper, a study on the batch processing and characterization of microcellular foamed high-density polyethylene (HDPE/iPP) blends is reported. A microcellular plastic is a foamed polymer with a cell density greater than 109 cells/cm3 and fully grown cells smaller than 10 µm. Recent studies have shown that the morphology and crystallinity of semicrystalline polymers have a great influence on the solubility and diffusivity of the blowing agent and on the cellular structure of the resulting foam in microcellular batch processing. In this research, blends of HDPE and iPP were used to produce materials with variety of crystalline and phase morphologies to enhance the subsequent microcellular foaming. It was possible to produce much finer and more uniform foams with the blends than with neat HDPE and iPP. Moreover, the mechanical properties and in particular the impact strength of the blends were significantly improved by foaming.  相似文献   

5.
Adhesion of four ethylene-octene block copolymers (OBCs) to polypropylene (PP) and high density polyethylene (HDPE) was studied by peeling PP/OBC/HDPE microlayered tapes. The four OBCs had different comonomer composition, mechanical properties and phase morphology. Through the Irwin damage zone analysis, it was found that the stress-strain behavior of OBC was the primary factor that determined the adhesion strength. Effectiveness of these OBCs as compatibilizers in PP/HDPE blends was also investigated. Toughness of all OBC-compatibilized blends was effectively improved. The OBCs having higher adhesion strength also resulted in better mechanical performance for the compatibilized blends. A quantitative correlation was established between the adhesion strength and mechanical performance of the blends.  相似文献   

6.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

7.
In this study, blends of metallocene short‐chain branched polyethylene (SCBPE) with low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polystyrene (PS), ethylene–propylene–diene monomer (EPDM), and isotactic polypropylene (iPP) were prepared in weight proportions of 80 and 20, respectively. The crystallization behaviors of these blends were studied with polarized light microscopy (PLM) and differential scanning calorimetry. PLM showed that SCBPE/LDPE, SCBPE/HDPE, and SCBPE/EPDM formed band spherulites whose band widths and sizes were both smaller than that of pure SCBPE. No spherulites were observed, but tiny crystallites were observed in the completely immiscible SCBPE/PS, and the crystallites in SCBPE/iPP became smaller; only irregular spherulites were seen. The crystallization kinetics and mechanical properties of SCBPE were greatly affected by the second polyolefin but in different way, depending on the phase behavior and the moduli of the second components. SCBPE may be phase‐miscible in the melt with LDPE, HDPE, and EPDM but phase‐separated during crystallization. A big change in the crystal morphology and crystallization kinetics existed in the SCBPE/iPP blend. The mechanical properties of the blends were also researched with dynamic mechanical analysis (DMA). DMA results showed that the tensile modulus of the blends had nothing to do with the phase behavior but only depended on the modulus of the second component. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1816–1823;2005  相似文献   

8.
In situ microfibrillar reinforced composites with ethylene-vinyl acetate (EVA) as matrix and isotactic polypropylene (iPP) as dispersed fibrils were successfully fabricated by multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs). Four types of EVA with different apparent viscosity were utilized to study the influence of viscosity ratio on the morphology and mechanical properties of EVA/iPP in situ microfibrillar blends. The scanning electron micrographs revealed that the dividing–multiplying processes in LMEs could effectively transform the morphology of iPP phase into microfibrils and the morphology of iPP microfibrils strongly depended on the viscosity ratio. Higher viscosity ratio was favorable for formation of finer microfibrils with narrower diameter distribution. The morphology development of iPP with different viscosity ratio greatly affected the rheological and mechanical properties of EVA/iPP blends. The dynamic rheological results shown that the iPP microfibrils were helpful to increase the storage modulus and loss modulus. The tensile test indicated that the mechanical properties of EVA/iPP blends were controlled by the morphology of iPP phase and the polarity of EVA matrix. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47557.  相似文献   

9.
采用接枝共聚方法,合成了高密度聚乙烯与马来酸酐,甲基丙烯酸和丙烯酸丁酯的接枝共聚物增容剂,研究了增容剂中接枝单体的种类及含量和增容剂用量等因素对高密度聚乙烯/尼龙1010共混体系力学性能的影响,结果表明在不同类型的接枝共聚物中以聚乙烯马来酸酐接枝共聚物对HDPE/PA1010共混体系的增容效果最好,在接枝单体含量和增容剂用量分别为4%-6%和5%左右时,共混体系的力学性能最好。  相似文献   

10.
A series of undrawn and drawn tapes has been prepared from HDPE, as well as, blends consisting of 90% HDPE and 10% ethylene copolymers. The influence of both the molecular irregularity of ethylene copolymers and resultant crystallization behavior on structure and mechanical properties of these blends has been investigated using differential scanning calorimetry, wide-and small-angle X-ray diffraction, mechanical response at small and large strains, and dynamic mechanical thermal analysis. The tensile drawing study of un-drawn tapes shows enhanced strain hardening and a consistent reduction in natural, as well as, maximum achievable draw ratio with an increase in molecular irregularity of ethylene copolymers. It has been confirmed that blends are partially miscible in the amorphous, as well as, in the crystalline phase through cocrystallization. The lateral crystallite thicknesses, crystallinity, and amorphous phase orientation of blends consistently decreases with an increase in molecular irregularity of ethylene copolymers because of a large-scale change in crystallization and drawing behavior of HDPE component in the blends. There is a distinct possibility that the molecular network exerts an important influence on physical and mechanical properties of undrawn and drawn tapes. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Blends of semicrystalline isotactic polypropylene (iPP) with two types of elastomer, butadiene/styrene (BS) and hydrogenated isoprene/styrene (HIS), block copolymers were investigated by means of wide-angle and small-angle X-ray scattering. Except for the sample with a low concentration of BS (5 wt%), where the copolymer macromolecules are probably dispersed in the amorphous phase of iPP, the blends can be described as two-component systems (copolymer-iPP), in which the crystalline phase of iPP is only slightly influenced by the copolymer. X-ray results in the structural investigation of the blends correlate well with the mechanical properties of the blends.  相似文献   

12.
The mechanical properties of high-density polyethylene (HDPE)-rich i-PP/HDPE blends were studied. Two grades of HDPE were investigated, one with a melt viscosity close to that of the polypropylene (PP) and the other having a much lower melt viscosity. Compatibilization of the 10/90 i-PP/HDPE blend with three copolymers (an ethylene/propylene/diene [EPDM] copolymer and two ethylene/vinylacetate [EVA] copolymers, differing in their VA content) was also investigated. Blends of PP with the low melt viscosity HDPE displayed poor mechanical properties. It was not possible to improve these properties sufficiently with EPDM or EVA. In the case where viscosity matching was achieved between PP and HDPE, addition of i-PP (up to 30%) to HDPE resulted in a large drop in the impact strength of the blends, compared to that of the neat HDPE. A large drop (>50%) was also observed in the ultimate tensile elongation. However, the flexural modulus, yield stress, and ultimate tensile strength all increased with the introduction of i-PP into HDPE. Modification of these blends with an EPDM resulted in the return of all properties to values very close to those of the neat HDPE. The ultimate tensile elongation of the EPDM-modified i-PP/HDPE blend even exceeded that of the virgin HDPE. It was also found that although EVAs can be used to compatibilize these blends these additives were not as effective as was the EPDM. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Morphology, mechanical behavior and other properties of isotactic polypropylene (iPP) and poly(phenylene oxide) (PPO) blends were studied. Large PPO particle sizes or delamination were found in binary iPP/PPO blends when no compatibilizers were added, while fracture toughness of the binary alloy was higher than that of both pure iPP and PPO. The addition of compatibilizers, triblock copolymers SEBS and SEPS, tremendously improved PPO particle dispersion and particle-matrix interfacial adhesion in iPP. The results of mechanical properties of the ternary iPP/PPO/compatibilizer blends showed that the compatiblization of SEPS is better than that of SEBS.  相似文献   

14.
The reactive compatibilization of blends of HDPE–PET [high‐density polyethylene–poly(ethylene terephthalate)] was investigated in this study. The compatibilizers used were two grafted copolymers prepared by reactive extrusion containing 1.20–2.30 wt % GMA such as HDPE‐g‐GMA and one statistical copolymer containing 1 wt % GMA such as Lotader AX8920. HDPE was successfully functionalized using a melt free‐radical grafting technique. Grafting was initiated in two ways: adding an initiator in the polymer–monomer mixture or activation by ozone of polymer. Ozonization of HDPE by the introduction of a peroxide lead to a better grafting yield and to better grafting efficiency of the samples. The effects of the three compatibilizers were evaluated by studying the morphology and the thermal and mechanical properties of HDPE–PET (70/30 wt %) blends. Significant improvements were observed, especially in morphology, elongation at break, and Charpy impact strength of the compatibilized blends. A more pronounced compatibilizing effect was obtained with the statistical copolymer, for which the elongation at break and the impact strength were increased by 100%, while the uncompatibilized blends showed a 60% decrease in the Young's modulus and the strength at break. We also were able to show that the grafting yield increase of 1.20–2.30 wt % of GMA did not affect the properties of the blends because the grafted copolymers possess very similar chemical structures. However, compatibilization of blends with grafted copolymers is an interesting method, particularly for recycled blends, because the synthesis of these compatibilizers is easy and cheap in comparison to statistical copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2377–2386, 2001  相似文献   

15.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Yongyan Pang  Xia Dong  Ying Zhao  Dujin Wang 《Polymer》2007,48(21):6395-6403
A typical toughened polymeric alloy system, isotactic polypropylene (iPP)/poly(ethylene-co-octene) (PEOc) blend, was selected in this study to investigate the influence of phase separation and crystallization on the final mechanical properties of the polyolefin blend. The time dependence of the morphology evolution of this iPP/PEOc blend with different compositions was annealed at both 200 and 170 °C and investigated with scanning electron microscopy (SEM) and phase contrast optical microscopy (PCOM). It was found that under the above two phase separation temperatures, the domain size of iPP80/PEOc-20 (PEOc-20) increases only slightly, while the structure evolution of iPP60/PEOc-40 (PEOc-40) is quite prominent. The tensile tests revealed that the mechanical properties of PEOc-20, including break strength and elongation at break decrease only in a very small amount, while those of PEOc-40 are depressed obviously with phase separation time. The decrease of interphase and a sharper boundary resulting from domain coarsening during the late-stage phase separation are responsible for the poor tensile properties. It is believed that the composition, the annealing time and the processing temperatures all contribute to the morphology evolution and the consequent mechanical properties of iPP/PEOc blends, furthermore, the crystallization procedure is another crucial factor influencing the ultimate mechanical properties of the investigated blends.  相似文献   

17.
Isotactic polypropylene (iPP) blends were prepared with two different thermoplastic elastomers, a triblock copolymer styrene–ethylene butylene–styrene (SEBS) and a metallocenic ethylene‐octene copolymer (EO). The mechanical properties and morphology of blends with 0–50 wt% elastomer were studied to determine the influence of the presence of the elastomer on the improvement of toughness. The addition of a nucleating agent as a third component exerted a significant effect on the overall properties. Dynamic mechanical properties, flexural modulus, and impact strength as well as morphology were studied for nucleated and nonnucleated iPP/SEBS and iPP/EO blends. The improvement of impact properties found in binary blends was accompanied by a decrease in stiffness. However, the addition of the nucleating agent provided a good balance between impact strength and stiffness. From the results, SEBS was determined to be a better impact modifier for iPP than EO. The nucleated iPP/SEBS blends demonstrated improved mechanical properties compared with both the nucleated iPP/EO blends and the nonnucleated blends. POLYM. ENG. SCI., 48:80–87, 2008. © 2007 Society of Plastics Engineers  相似文献   

18.
The crystallization, the morphology and the thermal behaviour of thin films of isotactic polypropylene (iPP) blended with elastomers such as random ethylene-propylene copolymers (EPM) with different ethylene content and polyisobutylene (PiB) were investigated by means of optical microscopy, differential scanning calorimetry and wide angle X-ray diffractometry. During crystallization EPM copolymers are ejected on the surface of the film forming droplet-like domains. A different morphology is observed in iPP/PiB blends. For these mixtures the elastomers separate from the iPP phase forming spherical domains that are incorporated in the iPP intraspherulitic regions. Both EPM and PiB elastomers act as nucleant agents for iPP spherulites. This nucleation efficiency is strongly dependent on the chemical structure and molecular mass of the elastomers. The addition of EPM causes an elevation of the observed and equilibrium melting temperature of iPP. This unusual effect may be accounted for by assuming that the elastomers are able to extract selectively the more defective molecules of iPP. The depression of the growth rate of spherulites and the observed and equilibrium melting temperature of iPP, noted in iPP/PiB blends, suggests that these two polymers have a certain degree of compatibility in the melt.  相似文献   

19.
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispresed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The mechanical properties and morphology of melt mixed polystyrene (PS)/polyethylene (PE) blends that were modified by the addition of up to 16% of a semicrystalline PS-b-hPB (hydrogenated polybutadiene) diblock copolymer with varying molecular weight are reported. As a result of the blocks of the copolymer penetrating the corresponding homopolymers, these diblock copolymers are capable of reinforcing the PS/PE interface significantly. This increase in interfacial strength between the immiscible blend components does not necessarily result in an improvement in the mechanical properties of the blends as measured by Izod or tensile tests. This may be because the effect of the copolymers on the rheological properties of the blends during processing outweighs their emulsifying/reinforcing effects. If found to be universally true for polymer blends, these results suggest that the relationship between the effects of copolymers on interfacial strength, their emulsifying effects, and the mechanical properties of copolymer modified blends are not as simple as suggested by many statements found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号