首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared by mixing the polymers in the melt and in the absence of a solvent. PMMA was the major constituent of the blend. The polymer blends were tested, using various methods, to determine if they are compatible as solids. Data obtained from dynamic mechanical and DSC measurements show that, when they are mixed under given Brabender mix conditions, the blends exhibit properties characteristic of polymer pairs compatible as solids. If the mix conditions are altered, a two-phase system is evidenced. Using micrographs obtained by light microscopy in phase contrast as criteria, two companion blends containing PMMA/PVAc 80/20 would be classified as incompatible as solids because of the differences in refractive index of PMMA and PVAc. The micrographs also show that, in the system that would otherwise be listed as compatible, the PVAc domains appear to be relatively uniform in size and distribution through the PMMA matrix. In its companion blend, large, irregularly shaped particles of PVAc which are poorly dispersed in the PMMA matrix are evident.  相似文献   

2.
综述了国内外回用聚对苯二甲酸乙二酯(R-PET)熔融共混改性的研究进展。异氰酸酯及均苯四酸二酐等扩链剂共混改性R-PET,通过共混熔融挤出,可提高R-PET的相对分子质量;有机聚合物如常规PET、聚烯烃(聚乙烯、聚丙烯以及接枝共聚物)、聚碳酸酯及聚碳酸酯的多组分混合物等共混改性R-PET,可提高共混材料力学性能;玻璃纤维、岩石纤维以及纳米有机粘土共混改性R-PET,可获取增强复合材料。  相似文献   

3.
The melt strength of a metallocene linear low-density polyethylene (m-LLDPE) can be enhanced significantly by blending in less than 10 wt% of long chain branched comb polymer. The extent of the enhancement could be ten-fold and depends on the architectural details of the comb polymer. Comb polymers primarily affect melt strength and have little effect on other properties such as shear thinning, melt index, melt index ratio, and intrinsic tear.Balancing melt strength properties against shear-thinning properties is important in LLDPE fabrication processes. One approach would be to augment the effect of comb polymer by blending in another component, namely an easy processing (also known as sparsely long chain branched) LLDPE. In the examples given here, the enhancements in melt strength and shear thinning properties of the base polymer were found to be additive, i.e. a simple weighted sum of component properties matched the blend properties within 10%.  相似文献   

4.
The functionalized copolymers, based on butyl methacrylate (BMA), and lauryl methacrylate (LMA) with crosslinking agent HEMA (hydroxyethyl methacrylate) or DVB (divinyl benzene), have been innovatively synthesized by suspension polymerization for oil absorption. Further, the copolymers and polypropylene (PP) blend fiber were attained via melt spinning. Swelling behaviors were evaluated by equilibrium swelling experiment, oil absorbency test, gel fraction measurement, and optical observations in toluene. The thermal properties and morphologies of the blend fibers were analyzed by thermogravimetry (TGA) and a field-emission scanning electron microscope, respectively. The results show that the copolymers and their blend fibers have an impressive absorbency. PBMA/LMA/HEMA can be up to 35.18?g/g, showing the highest absorption in trichloroethylene. Optical images of swollen polymers in toluene depicted a colloidal translucence with gel structure. Thermogravimetric measurement demonstrates that the copolymer and PP are incompatible and PBMA/LMA/DVB component possesses more thermal stability. The micrographs of the blend fibers exhibit coarse surface and porous cross-section, which leads to the fibers being much more readily wetted by oil and provides a huge space for oil storage.  相似文献   

5.
Chemiluminescence of an incompatible mixture of polystyrene and cis-1, 4-polybutadiene was studied. The luminescence characteristics of the component polymers are preserved in the incompatible blend and the intensity for the blend can be represented as the surface-area-average of the individual intensities.  相似文献   

6.
Phase behavior, thermal, rheological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers from optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.  相似文献   

7.
Polymer blends of polyamide 6 and polyethylene are obtained by application of high shearing forces to the two component polymer melt. No formation of block and of graft copolymers occurs. The polymer blend consists of two separate and mutually incompatible phases of both components, determining its bulk properties. To improve the compatibility of both polymers, experiments were performed to graft polyamide 6 onto polyethylene. It could be shown that polyethylene modified with maleic anhydride was especially suited for this purpose. Polyamide 6 chains could be grafted onto this modified polyethylene by anionic polymerization. The mechanical properties of a mixture of the graft copolymer with polyamide 6 are significantly better than those of a mere polyamide-6-polyethylene blend. This improvement is attributed to a greater homogenity of the two phase mixture if the graft copolymer is added.  相似文献   

8.
A novel, continuous process, solid‐state shear pulverization (S3P), efficiently mixes blends with different component viscosities. Melt mixing immiscible polymers or like polymers of different molecular weight often requires long processing times. With a batch, intensive melt mixer, a polyethylene (PE)/polystyrene (PS) blend with a viscosity ratio (low to high) of 0.019 required up to 35 min to undergo phase inversion. Phase inversion is associated with a morphological change in which the majority component, the high‐viscosity material in these blends, transforms from the dispersed to the matrix phase, and may be quantified by a change from low to high mixing torque. In contrast, such blends subjected to short‐residence‐time (~3 min) S3P yielded a morphology with a PS matrix and a PE dispersed phase with phase diameters ≤ 1 μm. Thus, S3P directly produces matrix and dispersed phases like those obtained after phase inversion during a melt‐mixing process. This assertion is supported by the similarity in the near‐plateaus in torque obtained in the melt mixer at short times with the pulverized blend and at long times with the non‐pulverized blend. The utility of S3P to overcome problems associated with melt mixing like polymers of extreme viscosity ratio is also shown.  相似文献   

9.
Polymer blends of commercial polyphenylene oxide (mPPO) and polypropylene (PP) are immiscible and incompatible in blend system. Maleic anhydride-grafted-copolymer has been employed as in situ compatibilizer for the mPPO and PP blends. This copolymer contains reactive anhydride functional groups that were able to react with mPPO at [sbnd]CH3 side methyl groups [sbnd]OH terminal groups under the melt conditions. The PP-g-MA copolymer reduces the interfacial tension between the two polymers and act as a bridge between them to make compatible. The blends have been characterized using FTIR, SEM, and its mechanical behavior.  相似文献   

10.
水溶性聚酯/PET共混物的结构与性能   总被引:5,自引:0,他引:5  
采用扫描电子显微镜、差示扫描量热仪研究了水溶性聚酯/PET(WSP/PET)共混物的相结构和热性能,并用Instron 3211毛细管流变仪研究了共混物的流变特性。结果表明,WSP/PET体系为热力学不相容体系,WSP的加入降低了共混物的结晶度,共混物熔体表现出切力变稀特征。  相似文献   

11.
Polyamide 6 (PA 6) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three PA 6/m‐iPP conjugated filaments. This study investigated the physical properties of PA 6/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density‐gradient measurements, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The flow behavior of PA 6/m‐iPP polyblended polymers exhibited negative‐deviation blends, and a 50/50 PA 6/m‐iPP blend showed the minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that PA 6 and m‐iPP molecules formed an immiscible system. The tenacity of the PA 6/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. The crystallinities and densities of the PA 6/m‐iPP conjugated filaments had a linear relationship with the blend ratio. Morphological observations revealed that the blends had a dispersed‐phase structure. A pore/fiber morphology of a larger size (from 0.5 to 3 μm in diameter) was observed after a formic acid (PA 6 was moved)/xylene (m‐iPP was moved) treatment on the cross section of a PA 6/m‐iPP conjugated filament. PA 6 and m‐iPP polymers were proved to be an incompatible system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1471–1476, 2006  相似文献   

12.
Isotactic polypropylene (PP) has been reactively blended with various grades of an ethylene–octene copolymer (EOC) in a twin‐screw extruder. Free radical polymerization of styrene and a multifunctional acrylate during melt extrusion has resulted in an enhancement of mechanical properties over the binary blend. The reactive blend exhibits a notched Izod impact strength over 12 times that of pure polypropylene and greater than double the performance of the binary blend. Electron microscopy shows that by grafting onto the polymers, elastomer particle size and interparticle distance decrease, while particle shape becomes less spherical. The acrylate is crucial to achieve superior performance, as infrared spectra correlate an increase in graft yield to improvements in stress–strain behavior and impact strength. In addition, melt flow index (MFI) and melt strength data indicate a reduction in unwanted side reactions of polypropylene and the presence of long‐chain branching. Dynamic‐mechanical analysis reveals that the reaction promotes miscibility between polypropylene and the EOC and reduces molecular mobility at their glass‐transition temperatures. Mechanical properties, graft yield, and MFI are shown to be highly dependent upon the elastomer's concentration, density, and molecular weight, initiator and monomer concentration, as well as processing temperature. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
The increasing tendency to consider waste polymers as suitable stocks for reconversion calls for guidelines as to the processing and end-product behavior of mixtures involving commodity polymers. In the present case, flow and some mechanical properties of mixtures involving low density polyethylene (PE) and filled polyvinyl chloride (PVC) were determined and used as a base-line of comparison with similar properties of multi-component mixtures involving potential compatibilizers for the incompatible matrix pair. Chlorinated polyethylene (CPE) ethylene-vinyl acetate (EVA) copolymer and ELvaloy polymeric plasticizer were the property modifiers selected. Blends were produced by roll-mill, Brabender or Banbury mixing. Flow properties were measured by capillary viscometry and solid-state properties were characterized by stress-strain data and tensile impact performance. Melt viscosities were non-linear functions of blend composition and varied significantly with the choice of compatibiliser, EVA and CPE producing greater benefits of melt strength than did Elvaloy. Elastic moduli, ultimate tensiles and tensile impact data also responded to the presence of compatibiliser, the EVA and CPE again being more effective in upgrading the properties of the incompatible matrix pair than was Elvaloy. Results, while preliminary, suggest guidelines for the composition of PE/PVC stocks with upgraded performance balance.  相似文献   

14.
Poly(ethylene terephthalate) and polypropylene are considered, to be incompatible by the usual criteria for polymer blends. Sheath/core filaments of these polymers could not be oriented because of poor adhesion of the base polymers. Melt blends of the two polymers with 30 and 50 weight percent polypropylene produced useful, oriented monofilaments. Tensile and dynamic mechanical properties of these filaments indicate that the structures consist of interlocked microfibrillar domains of the polyester and polyolefim. The glass transition region of poly(ethylene terephthalate) is not affected by admixture with polypropylene. A fine mutual dispersion of the two polymers was possible because the melt viscosities of the ingredients were reasonably well matched under the conditions of mixing. The melt viscosity and elasticity of blends were lower than those of either component as expected if the two polymers are immiscible. Monofilament extrusion and melt flow measurements were made with a one-half inch single screw extruder.  相似文献   

15.
PBT/PET共混体系相容性研究   总被引:3,自引:1,他引:3  
将聚对苯二甲酸丁二醇酯(PBT)与聚对苯二甲酸乙二醇酯(PET)熔融共混,通过粘度匹配原则, 确定PBT/PET共混体系的熔体温度为275-285℃,在283℃时制得PBT/PET共混切片,并对其共混体系进行相容性研究。结果表明:PBT/PET共混体系的理论热焓均小于41.8 mJ,为热力学相容体系;由扫描电镜观察PBT/PET共混体系在PBT和PET交界处发生了相分离,当PBT与PET共混比越接近,相分离程度越明显;DSC分析表明PBT/PET共混体系在非晶区相容,晶区不相容。  相似文献   

16.
An altered free-volume state (AFVS) model was developed for the zero-shear viscosity of homogeneous polymer blends. The model involves a single adjustable parameter and is capable of predicting several complex features of the blend viscosity-composition behavior. These include negative and positive deviations from additivity, maxima, minima, and sigma-shaped curves. The validity of the model was tested by comparison of the model predictions with experimental data for several homogeneous blend systems. It is shown that the model is valid within a broad molecular weight range and is more accurate than some of the currently accepted models such as the kinetic network model. Besides, it appears that the AFVS model also may be applicable to blends of incompatible polymers under certain conditions.  相似文献   

17.
Recycling of waste plastics as a blend of generic types is attractive since a difficult separations problem is avoided. However, blends of incompatible polymers are frequently very brittle and cannot be considered for many applications. Additives which modify the blend to give it ductility may provide a solution to this problem. Chlorinated polyethylene (CPE) made by a slurry process has been suggested for this application by Schramm and Blanchard. Further documentation of the effectiveness of this approach is given here. Addition of CPE to such a blend generally increases the elongation at break and the energy to break very dramatically with ordinarily some loss in strength and modulus. This approach works most effectively in blends of high polyethylene and poly(vinyl chloride) content. Three grades of CPE were studied here which revealed that the specific structure of the CPE molecule is a factor. The effectiveness of CPE for blend modification is believed to derive from the graded molecular structure acquired during chlorination.  相似文献   

18.
Because the exact nature of the mechanism governing the marked viscosity reduction in the highly incompatible EPDM/“Viton” fluoroelastomer system is not fully understood, a study was undertaken to shed more light on the phenomenon. Interracial. Slippage in the blend has been suggested as the mechanism by which a substantial reduction in the melt viscosities of either component takes place upon addition of a small amount of the other, In the present investigation, a Mooney slip analysis demonstrated wall slippage in the EPDM/Viton system over the shear stress range of 40 kPa to 160 kPa. The capillary surface was examined for evidence of coating by the minor component of the blend (Viton), and 9-fold enrichment was found by elemental analysis. However, on no occasion was pure Viton found. In other experiments, the dynamic linear viscoelastic properties and the transient squeezing flow response of the blend were found to be no different from those of the neat elastomer. In addition, the slip velocity in a capillary (and consequently, the viscosity-lowering effect) was reduced by a factor of 2 to 3 in capillaries with a 90° included entrance angle. It is postulated that the reduction in the flow resistance for the blend is unique to the sharp-entry capillary geometry and results from removal of Viton from the melt in the recirculating flow at the entrance. This material then feeds along the capillary wall, disrupting the already tenuous adhesion of the elastomer to the metal surface.  相似文献   

19.
Previous publications have shown that the stress-strain behavior, especially ductility, of some incompatible polymer blends are greatly improved by the addition of slurry produced chlorinated polyethylenes (CPE). This improvement is greatest for blends containing polyethylene and PVC. The most effective CPE's have some residual polyethylene crystallinity and may be described as block-like polymers with ethylene sequences and chlorine containing sequences. It is postulated that CPE addition improves the blend properties by increasing the adhesion between domains in the blend via interactions with the blend components. This hypothesis was explored by thermal analysis, dynamic mechanical testing, adhesion studies, and microscopy. It is concluded that the interaction of CPE with polyethylene derives from compatibility of rather long methylene sequences in CPE with the polyethylene which results in good adhesive bonding. The interaction of CPE with PVC may not be owing to segmental compatibility but simply good mutual adhesion between similar polar materials. There is no interaction or adhesion between CPE and polystyrene as would be expected. CPE addition to blends is accompanied by a decrease in component domain size. The relationship between CPE structure and its effectiveness as a blend modifier is discussed.  相似文献   

20.
The effect of high‐density polyethylene (HDPE)/polypropylene (PP) blending on the crystallinity as a function of the HDPE melt index was studied. The melting temperature and total amount of crystallinity in the HDPE/PP blends were lower than those of the pure polymers, regardless of the blend composition and melt index. The effects of the melt index, blending, and foaming conditions (foaming temperature and foaming time) on the void fractions of HDPEs of various melt indices and HDPE/PP blends were also investigated. The void fraction was strongly dependent on the foaming time, foaming temperature, and blend composition as well as the melt index of HDPE. The void fraction of the foamed 30:70 HDPE/PP blend was always higher than that of the foamed 50:50 HDPE/PP blend, regardless of the melt index. The microcellular structure could be greatly improved with a suitable ratio of HDPE to PP and with foaming above the melting temperature for long enough; however, using high‐melt‐index HDPE in the HDPE/PP blends had a deleterious effect on both the void fraction and cell morphology of the blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 364–371, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号