首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces a novel melt vibration‐injection molding. The effect of mid‐frequency melt vibration on mechanical properties was introduced, and SEM, WAXD and DSC investigations had been employed to provide evidence for explaining the relationship between mechanical properties and morphology of vibration‐injection‐molded specimens. The results show that the effect of vibration frequency is very different from that of vibration pressure amplitude. At a given vibration pressure amplitude, the increase of vibration frequency is beneficial for obtaining preferential orientation, more perfect lamellae and enhanced mechanical properties. For a given vibration frequency, increase of vibration pressure amplitude is a pre‐requisite for the achievement of a large‐scale lamella, more pronounced orientation, increase of cyrstallinity and high strength of high‐density polyethylene, but part of the toughness is lost. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc‐filled polypropylene specimens was analyzed. The specimens were lateral‐gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high‐speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high‐speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection‐molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings. POLYM. ENG. SCI., 52:1845–1853, 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
The effect of annealing on the microstructural evolution and mechanical properties of high‐density polyethylene parts molded via gas‐assisted injection molding was investigated using scanning electron microscopy, differential scanning calorimetry, two‐dimensional wide‐angle X‐ray diffraction and tensile testing. The results indicated that a variety of annealing temperatures could induce considerable variations in the hierarchical structures, crystallinity, lamellar thickness and yield stress of the molded bars. According to these results, the annealing temperatures could be divided into three regions. In the low‐temperature region of annealing at 80 °C, the spatial variation of the superstructure developed along the thickness direction and mechanical properties of the annealed sample were mainly unchanged and similar to those of the original specimen. At 100 and 120 °C, the intermediate temperature region of annealing, the thickness of the crystals, degree of orientation and yield stress of annealed samples were greatly improved. Finally, at 127 °C, the degree of orientation decreased and yield stress slightly improved, an indication of the high‐temperature annealing region being characterized by increasing melting/recrystallization and causing relaxation of oriented molecular chains. A model is proposed to interpret the mechanism of the annealing treatment of the samples at various temperatures. © 2013 Society of Chemical Industry  相似文献   

4.
The mechanical properties and morphology of UHMWPE/PP(80/20) blend molded by injection and compression‐molding were investigated comparatively. The results showed that the injection‐molded part had obviously higher Young's modulus and yield strength, and much lower elongation at break and impact strength, than compression‐molded one. A skin‐core structure was formed during injection molding in which UHMWPE particles elongated highly in the skin and the orientation was much weakened in the core. In the compression‐molded part, the phase morphology was isotropic from the skin to the core section. The difference in consolidation degree between two molded parts that the compression molded part consolidated better than the injection one was also clearly shown. In addition, compositional analysis revealed that there was more PP in the skin than core for the injection‐molded part, whereas opposite case occurred to the compression‐molded one. All these factors together accounted for the different behavior in mechanical properties for two molded parts. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A small amount of high molecular weight molecules can have a dramatic influence on the flow‐induced crystallization kinetics and orientation of polymers. To elucidate the effects of the high molecular weight component under a real processing process, we prepared model blends in which high density polyethylene with a high molecular weight and wide molecular weight distribution was blended with a metallocene polyethylene with a low molecular weight and very narrow molecular weight distribution. To enhance the shear strength, gas‐assisted injection molding was utilized in producing the molded bars. The hierarchical structures and orientation behavior of the molded bars were intensively explored by using scanning electron microscopy and two‐dimensional wide‐angle X‐ray diffraction, focusing on effects of the high molecular weight component on the formation of the shish kebab structure. It was found that there exists a critical concentration of high molecular weight component for the formation of a shish kebab structure. The threshold was about 5.5–7.0 times larger than the chain overlap concentration, suggesting an important role of entanglements of the high molecular weight component. Moreover, the rheological properties of molten polyethylene melts were studied by dynamic rheological measurements and a critical characteristic relaxation time for shish kebab formation was obtained under the processing conditions adopted in this research. © 2013 Society of Chemical Industry  相似文献   

6.
Decades ago, the production of packaging with the injection in‐mold labeling (IML) has been established. With this manufacturing technique, label and packaging, both are of the same polymeric material, become inseparably connected during the injection molding process. Because thermal conductivity of the polymeric label material is clearly smaller than that of the metal mold wall, thermal‐induced warpage of injected IML parts or part surface deformation could occur. In this study, structure and warpage behavior of IML parts, which are different from those of conventional molded parts without labels were intensively investigated. It was found that it is the volume contraction difference between label and substrate that forces IML parts to warp to the opposite side of the label. In addition, IML part warpage problem can be coped by varying the mold temperature on the stationary and moving mold platen. By increasing the mold temperature on the label side, the degree of IML part warpage can be reduced with acceptable reduction in mechanical properties. The optimum mold temperature range for particular substrate material, however, was found to be more decisive in maintaining the modulus of elasticity of IML parts than the magnitude of mold temperature difference. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Tensile and flexural tests on specimens cut from rectangular injection‐molded plaques show that long‐fiber filled thermoplastic composites are complex, non‐homogeneous, anistropic material systems. Like all fiber‐filled materials, they exhibit through‐thickness nonhomogeneity as indicated by differences between tensile and flexural properties. The in‐plane orientation of fibers in through‐thickness layers causes the material to have in‐plane anisotropic properties. However, these long‐fiber filled materials exhibit an unexpectedly large level of in‐plane nonhomogeneity. Also, the effective mechanical properties of these materials are strongly thickness dependent. The thinnest plaques exhibit the largest differences between the flow and cross‐flow tensile properties. These differences decrease with increasing thickness. A methodology for part design with this class of materials is discussed.  相似文献   

8.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

9.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   

10.
The micromechanical properties of injection‐molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X‐ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition, creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection‐molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4893–4899, 2006  相似文献   

11.
The production of injection‐molded parts free from surface appearance defects is of great importance in the manufacturing of high‐quality products. A particular surface defect which occurs on components manufactured from an acrylonitrile‐butadiene‐styrene copolymer (ABS) is here described. The defect has been called ghost marks and is characterized by a local change in gloss or lightness which is only visually detectable in certain viewing angles and conditions of illumination. By means of scanning electron microscopy, small‐scale deformations of the surface texture were observed in the area of the defect which in turn alters the light scattering properties of the surface. The light scattering properties were evaluated by means of a multiangle spectrophotometer. The holding pressure during the injection molding process was shown to play a significant role in the formation of the ghost marks possibly imposing forces causing the deformation of the surface texture. The deformations may also occur from nonuniform thermal surface shrinkage during cooling. The type of texture and wall thickness also influences the occurrence of ghost marks.POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

12.
It is feasible to control the phase morphology and orientation for immiscible polymer blends to manipulate their properties. In this paper, the blend of polyamide 1010 (PA1010) and isotactic polypropylene (iPP) (mainly at a fixed ratio of PA1010/iPP = 80/20) was used as an example to demonstrate the effect of shear on the morphology and resultant mechanical properties. After being melt blended, the injection‐molded bars were prepared via a dynamic packing equipment to impose a prolonged shearing on the melts during the solidification stage. By controlling the shear time, the structure evolution and morphological development of the blends can be well controlled. Mechanical measurement of the molded bar showed a dramatically improved tensile property and impact strength with increasing shear time. Morphological examination revealed that the iPP droplets are elongated and become thin fibrils along the shear direction with increasing shear time. The shear‐induced fibrillation, instead of orientation, is believed to be responsible for the largely improved properties of the blend, particularly for the impact strength. The toughening mechanism is discussed based on the combined effect of hindrance of crack propagation and the transferring and bearing of the load due to the existence of the fibrils. This was further proved by changing the blending ratio and using low molecular weight iPP. Finally, we propose a concept for designing blending materials with good comprehensive properties. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Natural fiber‐thermoplastic composite materials, based on their cost‐effectiveness and environmental friendliness, have attracted much interest both scientifically and technologically in recent years. Other advantages of natural fibers are good specific strength, less abrasion, and less irritation upon inhalation (in comparison with some common inorganic fillers). In the present contribution, roselle (Hibiscus sabdariffa L.) fibers were chosen and used as reinforcing fillers for isotactic polypropylene (iPP) for the first time, due mainly to the cost‐effectiveness and natural abundance on Thai soil. Processibility and mechanical properties of the resulting composites were investigated against the type and the mean size of the fibers. The results showed that the highest mechanical properties were observed when roselle bast fibers were incorporated. When whole‐stalk (WS) fibers (i.e., the weight ratio of bast and core fibers was 40 : 60 w/w) were used, moderate mechanical properties of the resulting composites were realized. The optimal contents of the WS fibers and the maleic anhydride‐grafted iPP compatibilizer that resulted in an improvement in some of the mechanical properties of the resulting composites were 40 and 7 wt %, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3291–3300, 2006  相似文献   

14.
Antistatic polymers are required to dissipate static charges safely from component surfaces. Our overall objective has been to develop cost‐effective flame‐retarded and antistatic polyethylene compounds suitable for rotomolding. This communication considers the surface resistivity and mechanical properties of rotationally molded linear low‐density polyethylene (LLDPE)/graphite composites containing natural Zimbabwean graphite, expandable graphite, or expanded graphite. Dry blending and melt compounding were employed to obtain antistatic composites at the lowest graphite contents. Dry blending was found to be an effective mixing method for rotomolding antistatic LLDPE/graphite composites, thereby eliminating an expensive compounding step. Dry‐blended Zimbabwean graphite composites showed the lowest surface resistivity at all graphite contents, with a surface resistivity of 105 Ω/square at 10 wt% loading. Although rotomolded powders obtained following the melt compounding of Zimbabwean graphite exhibited higher resistivity values, the variability was much lower. Injection molding resulted in surface resistivity values above 1014 Ω/square for all compositions used. The rotomolded composites exhibited poor mechanical properties, in contrast to injection‐molded composites. The Halpin‐Tsai model showed good fits to the tensile modulus data for injection‐molded Zimbabwean and expandable graphite. J. VINYL ADDIT. TECHNOL., 19:258–270, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
The relationship between the structure and the optical properties of isotactic polypropylene (PP) containing 1,3:2,4‐di‐p‐methylbenzylidene sorbitol (MDBS) has been studied. It is found that thinner injection‐molded plaques of PP/MDBS show higher levels of transparency than compression‐molded plaques. The enhanced molecular orientation in the skin layer is responsible for the depression of light scattering because of polarizability fluctuation, i.e., orientation fluctuation in the crystalline phase, because the size of the fluctuation becomes larger than the wavelength of visible light. Further, the crowded network structure of the MDBS fibers generated in molten PP prohibits spherulite formation and, as a result, depresses the spatial size of polarizability fluctuation in the core, which is smaller than the wavelength of visible light. Consequently, light scattering from the core layer is also reduced. POLYM. ENG. SCI., 47:1441–1446, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
Scintillating tiles for the Tilecal/Atlas calorimeter can be produced by injection molding, an alternative to mold casting via in situ polymerization. This new production method, which leads to a much faster production rate, introduces a number of additional variables that affect the optical yield of the scintillators and that have not yet been reported in the literature. In this work, the effect of processing‐induced orientation on the optical properties of the scintillators is analyzed and discussed. For this purpose, the birefringence across the thickness of the scintillator has been measured. The variations of the birefringence may be correlated with the orientation and, therefore, related to the optical performance, that is, the average light output and its nonuniformity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2706–2713, 2003  相似文献   

17.
The morphology and thermal conductivity of injection‐molded polyamide 46 (PA46) samples were investigated in this study. It was found that injection molding parameters had no influence on the thermal conductivity. This was attributed to the high crystallization speed and therefore imperfect crystal structure of PA46. By annealing of some samples at 260°C for 24 h the thermal conductivity was increased by 30%. Polarization light microscopy revealed only minor changes of the visible morphological structure for the as molded and annealed samples. For the investigation of the sample crystallinity via Raman spectroscopy an analysis method was established and the term “Raman crystallinity” is introduced as the intensity ratio of characteristic Raman bands. Via Raman crystallinity it was possible to distinguish between different mold temperatures and the annealed PA46 samples showed a significantly increased Raman crystallinity. Our results show that the thermal conductivity of PA46 primarily depends on the crystal structure on a length scale of crystallites. The size of the visible spherulite‐like structures did not correlate with the change in thermal conductivity. A correlation of the Raman crystallinity with the thermal conductivity of PA46 was shown. POLYM. ENG. SCI., 55:2231–2236, 2015. © 2015 Society of Plastics Engineers  相似文献   

18.
19.
Nanocomposites of polyetheretherketone (PEEK) and hydroxyapatite (HA) nanoparticles treated with a silane coupling agent were successfully prepared by twin screw extrusion and injection molding. Some of the samples were annealed after the injection molding. The silane treatment promoted an improvement of the short‐ and long‐term mechanical properties of the nanocomposites. A higher stress and a six times higher deformation at break and a higher impact strength were observed in the silane‐treated nanocomposites when compared to the nontreated ones. The number of cycles to fail of the treated nanocomposites was almost 200% higher than the number of cycles to fail of the nontreated samples. The treatment also decreased the glass transition temperature and amount of crystallinity of the samples. This improvement in mechanical properties obtained from the silane treatment was attributed to the strengthening of the PEEK/HA interfacial bond, to the plasticization of the PEEK matrix by silane oligomers produced during the processing and to a better dispersion of the HA nanoparticles within the PEEK matrix. Samples annealing, however, diminished all these properties due to the increase in crystallinity. Studies of the short‐ and long‐term mechanical properties of these nanocomposites under physiological conditions and of the proliferation of stem cells are under way. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44476.  相似文献   

20.
The effect of melt temperature, ultrasonic oscillations, and induced ultrasonic oscillations modes on weld line strength of polystyrene (PS) and polystyrene/polyethylene (PS/HDPE) (90/10) blend was investigated. The results show that the increase of melt temperature is beneficial to the increase of weld line strength of PS and PS/HDPE blend. Compared with PS, the increase of melt temperature can greatly enhance the strength of PS/HDPE blends. For PS, the presence of ultrasonic oscillations can enhance the weld line strength of PS at different melt temperatures. But for PS/HDPE blends, the presence of ultrasonic oscillations can improve the weld line strength when the melt temperature is 230°C, but when the melt temperature is 195°C, the induced ultrasonic oscillations hardly enhance the weld line strength. Compared with Mode I (ultrasonic oscillations were induced into the mold at the whole process of injection molding), the induced ultrasonic oscillations as Mode II (ultrasonic oscillations were induced into the mold after injection mold filling) is more effective at increasing the weld line strength of PS and PS/HDPE blends. The mechanism for ultrasonic improvement of weld line strength was also studied. POLYM. ENG. SCI., 45:1666–1672, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号