首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
为了更有效地确定数据集的最佳聚类数,提出一种新的确定数据集最佳聚类数的算法。该算法借签层次聚类的思想,一次性地生成所有可能的划分,然后根据有效性指标选择最佳的聚类划分,进而获得最佳聚类数。理论分析和实验结果证明,该算法具有良好的性能。  相似文献   

2.
K-means算法最佳聚类数确定方法   总被引:10,自引:0,他引:10  
K-means聚类算法是以确定的类数k为前提对数据集进行聚类的,通常聚类数事先无法确定。从样本几何结构的角度设计了一种新的聚类有效性指标,在此基础上提出了一种新的确定K-means算法最佳聚类数的方法。理论研究和实验结果验证了以上算法方案的有效性和良好性能。  相似文献   

3.
一种基于近邻传播算法的最佳聚类数确定方法   总被引:2,自引:0,他引:2  
在聚类分析中,决定聚类质量的关键是确定最佳聚类数,对此,从样本几何结构的角度定义了样本聚类距离和样本聚类离差距离,设计了一种新的聚类有效性指标.在此基础上,提出一种基于近邻传播算法确定样本最佳聚类数的方法.理论研究和实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合于确定样本的最佳聚类数.  相似文献   

4.
在分析核函数所隐式描述的样本间成对相似性的基础上,该文从统计的角度分别定义了能反映类内(类间)样本相似性的类内(类间)个体平均相似系数,设计了一个高效的评价核聚类算法聚类质量的有效性指标。该指标具有物理意义清晰、计算简洁以及对核参数具备一定鲁棒性的优点。在此基础上,提出了一个能自动确定最佳聚类数目和最佳划分的自适应核聚类(SAKC)算法。Benchmarks实验结果验证了所提出的聚类有效性指标及其SAKC算法的有效性和良好性能。  相似文献   

5.
确定数据集的最佳聚类数是聚类研究中的一个重要难题。为了更有效地确定数据集的最佳聚类数,该文提出了通过改进K-means算法并结合一个不依赖于具体算法的有效性指标Q(c)对数据集的最佳聚类数进行确定的方法。理论分析和实验结果证明了该方法具有良好的性能和有效性。  相似文献   

6.
基于近邻传播算法的最佳聚类数确定方法比较研究   总被引:2,自引:0,他引:2  
在聚类分析中,决定聚类质量的关键是确定最佳聚类数.提出采用聚类效果较好的近邻传播聚类算法对样本进行聚类,运用6种聚类有效性指标分别对聚类结果进行有效性分析,以确定最佳聚类数.具体分析了这些有效性指标,并改进了IGP指标确定最佳聚类数的方法.针对8个数据集,通过实验比较这些指标的性能.分析和实验结果表明,基于近邻传播聚类...  相似文献   

7.
王勇  唐靖  饶勤菲  袁巢燕 《计算机应用》2014,34(5):1331-1335
针对K-means聚类算法通常无法事先设定聚类数,而人为设定初始聚类数目容易导致聚类结果不够稳定的问题,提出一种新的高效率的K-means最佳聚类数确定算法。该算法通过样本数据分层来得到聚类数搜索范围的上界,并设计了一种聚类有效性指标来评价聚类后类内与类间的相似性程度,从而在聚类数搜索范围内获得最佳聚类数。仿真实验结果表明,该算法能够快速、高效地获得最佳聚类数,对数据集聚类效果良好。  相似文献   

8.
基于层次划分的最佳聚类数确定方法   总被引:20,自引:0,他引:20  
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.  相似文献   

9.
聚类是一种经典的数据挖掘技术,它在模式识别、机器学习、人工智能等多个领域得到了广泛的应用.通过聚类分析,目标数据集的深层次结构可以被有效地发掘出来.作为一种常用的划分聚类算法,K-means具有实现简单、能够处理大型数据等优点.然而,受收敛规则的影响,K-means算法仍然存在着对初始类簇中心的选取非常敏感、不能很好地...  相似文献   

10.
新的K-均值算法最佳聚类数确定方法   总被引:8,自引:0,他引:8       下载免费PDF全文
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。  相似文献   

11.
在不确定数据流聚类算法的研究中,位置不确定性是一种新的不确定数据类型.已有的不确定数据模型不能很好地描述和处理位置不确定数据.鉴于此,在提出基于联系数的位置不确定数据模型、联系距离函数、微簇密度可达性等主要概念的基础上,提出了一种联系数表达的位置不确定数据流聚类算法--UCNStream.数据流聚类算法采用在线/离线两级处理框架,使用基于密度峰值思想的初始化策略,定义了新的可动态维护的微簇聚类特征向量.利用衰减函数和微簇删除机制对微簇进行在线维护,准确地反映了数据流的演化过程.最后,分析了算法的计算复杂性,并通过对实际数据集上的实验与几种优秀的聚类算法进行了比较,实验结果表明,UCNStream算法具有较高的聚类精度和处理效率.  相似文献   

12.
在传统确定数据集聚类数算法原理的基础上,提出一种新的算法——MHC算法。该算法采用自底向上的策略生成不同层次的数据集划分,计算每个层次的聚类划分质量,通过聚类质量选择最佳的聚类数。还设计一种新的有效性指标——BIP指标,用于衡量不同划分的聚类质量,该指标主要依托数据集的几何结构。实验结果表明,该算法能准确地确定多维数据集中的最佳聚类数。  相似文献   

13.
基于改进演化算法的空间数据聚类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
分析空间数据的特点和用常规方法进行空间数据聚类分析的难点与不足,提出一种基于改进的演化算法空间数据聚类方法——SDCEA。解决用传统方法进行空间数据聚类分析时存在的问题,增强聚类分析方法的灵活性和有效性。实验结果表明,对于空间数据的聚类分析问题,该算法具有很好的性能。  相似文献   

14.
该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。  相似文献   

15.
该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点.以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。  相似文献   

16.
聚类分析根据类对象划分为Q型聚类和R型聚类,基于贝叶斯方法的Q型聚类算法,详细说明该算法的基本思想和具体实现过程.实验结果表明算法的可行性,该算法对于数据挖掘具有一定的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号