首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rigid poly(vinyl chloride) was reinforced with 10 to 40 phr of 1/4-inch glass fiber. This improved flexural modulus up to 140 percent, flexural strength 40 percent, and heat-deflection temperature 8°C; and reduced creep by 90–95 percent, and the coefficient of thermal expansion by 50 percent. Thus a typical Type I rigid vinyl with glass reinforcement had flexural modulus 1,164,000 psi, flexural strength 16,500 psi, notched Izod impact strength 5.1 fpi; creep only 12 percent of normal unreinforced material, coefficient of thermal expansion only 50 percent of normal unreinforced material, and heat-deflection temperature 79°C. Such balance of properties elevates rigid vinyl from a commodity plastic up to an engineering thermoplastic, capable of much wider and more economical utilization in high-performance applications.  相似文献   

2.
Copolymers of vinyl chloride–vinyl acetate have been prepared with different vinyl acetate contents and molecular weights and under different polymerization conditions. A rheological study of these copolymers indicates that they behave in some ways like externally plasticized PVC. For instance, as the vinyl acetate content increases, the melt viscosity decreases, the flow activation energy decreases, and the copolymer becomes more Newtonian. However, the critical shear rate for melt fracture increases, resembling the addition of elastic polymers to PVC. An increase in copolymer molecular weight has a similar effect on the rheological behavior as in PVC, except that the flow activation energy is observed to increase rather than decrease. Decreasing the polymerization temperature affects the flow properties of the copolymer, probably due to changes in degree of branching and crystallinity. A copolymer made by the delayed addition of vinyl chloride, having a more random structure than one made by the conventional batch method, exhibited quite different flow behavior. It had a lower melt viscosity, higher critical shear rate, and lower flow activation energy.  相似文献   

3.
Nitric acid digestion studies of ethylene–vinyl acetate copolymers indicated that copolymers containing identical amounts of vinyl acetate but varying in melt index differed in crystallinity. These results were confirmed by x-ray analysis. The differences in crystallinity were interpreted as showing a variation in the degree of short-chain branching in the polyethylene segments of the copolymer chain. This variation was correlated with the conditions of synthesis.  相似文献   

4.
The stress‐strain behavior of vinyl alcohol‐ethylene copolymers, with vinyl alcohol as main component, was studied. Films of the copolymer samples, either quenched or slowly cooled from the melt, were stretched at 23, 40 and 80°C. The two former temperatures are below the glass transition (Tg) and the latter is well above the Tg of the studied samples. The drawing process was carried out at different strain rates, and the influence of the stretching parameters (temperature, strain rate) as well as the thermal history and composition of the copolymer samples are discussed in relation to the corresponding homopolymers, poly(vinyl alcohol) and polyethylene. The copolymer with the highest vinyl alcohol content exhibited a critical strain rate, showing maximum values of Young's modulus at a deformation rate around 0.66/min.  相似文献   

5.
The synthesis of vinyl phenyl acetate, by an ester interchange reaction between phenyl acetic acid and vinyl acetate and utilizing a catalyst, is described. Copolymerization with vinyl chloride, in a suspension system and using a peroxide catalyst, is described on a laboratory and pilot plant scale. Monomer/copolymer compositions, for an initial charge consisting of vinyl chloride/vinyl phenyl acetate (80/20 by weight) are presented over a range of conversions, as an indication of reactivity ratios. Discs, molded from unstabilized copolymers, show very good clarity and color stability, which improve with increased comonomer loading. Some retention of unpolymerized vinyl phenyl acetate monomer occurred, and some increase in softening points resulted following two reprecipitations from acetone into excess methanol. Compound from a 96/4 vinyl chloride/vinyl phenyl acetate copolymer has better color stability than does an equivalent vinyl chloride/vinylidene chloride copolymer compound. The enhanced color and heat stability of the copolymers is attributed to the aromatic character of the comonomer vinyl phenyl acetate.  相似文献   

6.
Nylon 1010 blends with ethylene–vinyl acetate copolymer (EVA) and maleated ethylene–vinyl acetate (EVA‐g‐MAH) were prepared through melt blending. The vinyl acetate (VA) content and viscosity of EVA significantly affected the notched impact strength of nylon/EVA/EVA‐g‐MAH (80/15/5) blends. The nylon/EVA/EVA‐g‐MAH blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content in EVA ranged from 28 to 60 wt%. The effect of VA content on the notched impact strength of blends was related to the glass transition temperature for EVA with high VA content and crystallinity for EVA with low VA content. For nylon blends with EVA with the same VA content, low viscosity of EVA led to high notched impact strength. Fracture morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends showed that blends with ductile fracture behavior usually had large matrix plastic deformation, which was the main energy dissipation mechanism. A relationship between the notched impact strength and the morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends was well correlated by the interparticle distance model. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
In the present study, poly(lactic acid) (PLA), a biodegradable plastic, was melt‐blended with five weight percentages (10–50 wt%) of ethylene vinyl acetate (EVA) copolymer, a non‐biodegradable plastic, having a vinyl acetate content of 19 wt% and a melt flow index of 530 g/10 min, on a twin screw extruder, followed by an injection molding. The blends at 10 and 20 wt% EVA revealed a noticeably increased impact strength and strain at break over the pure PLA, and the blend at 10 wt% EVA exhibited the highest impact strength and strain at break. The 90/10 (wt%/wt%) PLA/EVA blend was then selected for preparing either single or hybrid composite with wood flour (WF) and wollastonite (WT). The filler loading was fixed at 30 parts by weight per hundred of resin throughout the experiment, and the WF/WT weight ratios were 30/0, 20/10, 15/15, 10/20, and 0/30. The prepared composites were examined for their mechanical and thermal properties, melt flow index, flammability, water uptake, and biodegradability as a function of composition. All the composites showed a filler‐dose‐dependent decrease in the impact strength and strain at break, but an increase in the tensile and flexural modulus (optimal at 0/30 WF/WT) and tensile and flexural strength (optimal at 30/0 WF/WT) as compared with the neat 90/10 (wt%/wt%) PLA/EVA blend. In addition, the melt flow index, char residue, anti‐dripping ability, water uptake, and biodegradability of the composites were also higher than those of the neat blend. J. VINYL ADDIT. TECHNOL., 25:313–327, 2019. © 2019 Society of Plastics Engineers  相似文献   

8.
The stress–strain and torsional characteristics of some experimental copolymers of vinyl tetrahydroabietate and vinyl maleopimarate acid anhydride with vinyl chloride and vinyl acetate have been determined. Similar studies were also undertaken on peroxide-cured compositions of a vinyl chloride-vinyl tetrahydroabietate copolymer. Elastie moduli for the uncured copolymers range from 80,200 to 338,000 psi. Cured compositions of vinyl chloride–vinyl tetrahydroabietate copolymer exhibited both lower and higher moduli than that of the uncured copolymer. Some of the cured compositions appear to have an improved impact resistance over that of the uncured polymers.  相似文献   

9.
The reversible gelation of acrylonitrile–vinyl acetate copolymers in concentrated solutions has been studied with the use of various solvents. These concentrated solutions gel or become rigid with time, but they become fluid again when heated above a certain temperature called the gel melting point. A technique involving the use of mercury drops was developed to measure this transition. This temperature was evaluated as a function of solids level, water content in the solvent, and the amount of vinyl acetate in the copolymer, dimethylacetamide being used as the solvent. Four other solvents were used to obtain limited data. Gel melting was studied further by differential thermal analysis and shear modulus measurements. The results are discussed in terms of network formation and solubility. The x-ray diffraction results imply that the tie points of the gel are crystalline.  相似文献   

10.
The objective of this research was to investigate the effect of temperature, pressure, initiator concentration and agitation rate, in ethylene-vinyl acetate emulsion copolymerization, on copolymer composition. The inline React-IR ATR system was used to monitor the reaction as well as to determine residual free vinyl acetate. Pressure, temperature and agitation rate have great influence on mass transfer of ethylene monomer to the reaction sites. The vinyl acetate was introduced in semi-batch mode as well as ethylene since the copolymerization was carried out under a constant pressure of ethylene. The higher temperature results in lower content of ethylene incorporated in copolymer. Increase of pressure has a direct effect on the ethylene content in the copolymers through increasing solubilization of ethylene monomer which in turn increases ethylene content in the copolymers. Copolymers of up to 15 wt.% of ethylene content have been synthesized at an ethylene pressure of 30 bar and a temperature of 75 °C. Analytical methods, such as differential scanning calorimetry, nuclear magnetic resonance, thermogravimetric analysis, and infrared spectroscopy were used for characterization of copolymers.  相似文献   

11.
Vinyl stearate was studied as a major internal plasticizer in terpolymers containing vinyl acetate and vinyl chloride. The terpolymers were prepared by systematically replacing vinyl acetate by close increments of vinyl stearate starting with combinations of vinyl acetate and vinyl chloride, in increments, over all compositions. For comparison of properties, a complete range of copolymers of vinyl stearate and vinyl chloride, as well as mixtures of poly(vinyl chloride) and di-2-ethylhexyl phthalate (DOP) were also made. The external plasticizer was more efficient in reducing the glass temperature than was vinyl stearate. The decline in Tg with weight fraction of plasticizer was linear for the copolymers and terpolymers but concave downward with the liquid diluent. The linear decline was shown to involve mere additivity of the free volume contributed by each side-chain methylene (or methyl) group in both vinyl esters to reducing Tg. The mechanism of the diluent system was more complex. However, the magnitude of the reduction of tensile modulus at a given weight fraction of DOP could be equaled or exceeded by the same amount of vinyl stearate, by increasing the vinyl acetate content of the base copolymer to 40 mole-% or more. Unfortunately, the ultimate strengths and elongations of internally plasticized systems were reduced more than those of the mixtures at comparable compositions. Vinyl stearate was found to markedly retard photolytic degradation compared to both vinyl acetate and the external plasticizer in unstabilized samples having nearly the same thermal treatment. The effect was greater than could be ascribed to dilution by the long alkyl group. The production of a stearoyl radical more stable than the radicals initiating dehydrochlorination is suggested as a possible mechanism.  相似文献   

12.
Graft copolymers of chitosan and vinyl acetate were synthesized by free radical technique using cerium (IV) as the initiator. Under controlled conditions, as much as 92% grafting with a grafting yield of 30–40% could be achieved. Chitosan‐g‐poly(vinyl alcohol) copolymers were derived by the alkaline hydrolysis of the chitosan‐g‐poly(vinyl acetate) precursor. Thermogravimetric, FTIR, and X‐ray diffraction analyses of chitosan and the copolymers confirmed the grafting reaction between chitosan and vinyl acetate and also the subsequent hydrolysis. Both the copolymers possessed very good film‐forming properties. Grafting resulted in a significant increase in mechanical strength of both the copolymers in the dry condition. Chitosan‐g‐poly(vinyl acetate) (CH‐PVAc) proved more hydrophobic than did pure chitosan, whereas chitosan‐g‐poly(vinyl alcohol) (CH‐PVOH) exhibited enhanced hydrophilicity as evident from their swelling characteristics and contact angle measurements. The enhanced swelling of CH‐PVOH was ascribed to the presence of the pendant poly(vinyl alcohol) group. At pH 1.98, the CH‐PVAc copolymer films showed greater stability than do pure chitosan films, which is highly beneficial for specific biomedical applications. Both the copolymers showed lower glass transition temperature than do pure chitosan. Grafting did not affect the overall thermal stability, and the differential thermogram substantiated the grafting. The investigations indicate that the synthetic–natural hybrid copolymers having desirable mechanical properties and tailored hydrophilic/hydrophobic characteristics are realizable. These polymers could be exploited for varied biomedical applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1852–1859, 2007  相似文献   

13.
A study has been made of radiation-induced grafting of vinyl acetate (VAc) on to (tetrafluoroethylene–perfluorovinyl ether) copolymer (PFA). Effects of grafting conditions such as inhibitor and monomer concentrations and irradiation dose on the grafting yield were investigated. In this grafting system, ammonium ferrous sulphate (Mohr′s salt) was added to the monomer-solvent mixture to minimize the homopolymerization of VAc and the most suitable concentration was found to be 2.0 wt%. It was found that the dependence of the initial grafting rate on monomer concentration is of the order 1.5. The degree of grafting tends to level off at high irradiation doses due to the recombination of formed free radicals without initiating graft polymerization. Some properties of the prepared graft copolymer such as swelling behaviour, electrical conductivity, thermal and mechanical properties were also investigated. The electrical conductivity was improved by hydrolysis of poly(vinyl acetate) in the grafted chains to their respective vinyl alcohols. The tensile properties were improved by grafting; however, the elongation percent decreased. The DTA data showed thermal stability of such graft copolymers for temperatures up to 300°C, but stability decreased at higher temperatures.  相似文献   

14.
In an investigation of the behavior and formation mechanism of melt fracture the flow properties of molten ethylene–vinyl acetate (EVA) copolymer in the region of high shear rate were measured with a capillary-type rheometer. EVA copolymer differs slightly in flow curve from low-density polyethylene (LDPE); it seems, however, that the difference is due to the difference in molecular weight distribution (MWD) rather than to the materials themselves. The fluidity of molten EVA copolymer having a narrow MWD is equivalent to that of LDPE having a broad MWD and, generally, EVA copolymer has a higher fluidity than LDPE. It is expected that the fluidity increases with incorporation of vinyl acetate at the same MWD and the same M?w. The critical shear rate increases with melt index and temperature. It cannot be found that the materials themselves and the MWD directly influence the critical point of melt fracture formation when the melt index is taken as a parameter. The critical viscosity (ηc) at which melt fracture forms decreases in an almost straight line with an increase of melt index. It was found from the studies of end correction and behavior of melt fracture formation that melt fracture occurs at the inlet of the die, and it is supposed that the melt fracture formation is caused by the elastic turbulence in the flow pattern due to a failure of recoverable shear strain at the die inlet.  相似文献   

15.
Four ethylene vinyl acetate copolymers (EVAs) containing 9, 12, 18 and 20 wt% vinyl acetate (VA) were treated with concentrated sulphuric acid to improve their adhesion to polychloroprene (PCP) adhesive. The tensile strength and Young's modulus of EVAs decreased as the VA content increased, due to the reduction in crystallinity of the polyethylene blocks in the copolymer. The modifications produced in the EVAs by treatment with sulphuric acid were followed using contact angle measurements (water, 25 °C), ATR-IR spectroscopy and scanning electron microscopy (SEM). Adhesive-bond strength was obtained by T-peel tests on treated EVA/polychloroprene adhesive joints. The vinyl acetate content in the EVA affected the extent, but not the nature, of the surface modification produced by treatment with sulphuric acid. The treatment produced both sulfonation and oxidation on the EVA surfaces. The higher the vinyl acetate content in the EVA, the more significant the modifications produced. Increased T-peel strengths of EVA/polychloroprene adhesive + 5 wt% polyisocyanate joints were obtained and a mixed failure (adhesion failure + cohesive failure in the adhesive) was produced. It was found that, to be effective, the treatment of EVAs must be carried out with 96 wt% sulphuric acid.  相似文献   

16.
The influence of the compression‐molding temperature on the range of cocontinuity in polystyrene (PS)/ethylene–vinyl acetate (EVA) copolymer blends was studied. The blends presented a broad range of cocontinuity when compression‐molded at 160°C, and they became narrower when compression‐molded at higher temperatures. A coarsening effect was observed in PS/EVA (60:40 vol %) blends upon compression molding at higher temperature with an increase in the phase size of the cocontinuous structure. Concerning PS/EVA (40:60 vol %) blends, an increase in the mixing and molding temperatures resulted in a change from a cocontinuous morphology to a droplet–matrix morphology. This effect was observed by selective extraction experiments and scanning electron microscopy. The changes in the morphology with the molding conditions affected the storage modulus. An increase in the storage modulus in blends compression‐molded at 160°C was observed as a result of dual‐phase continuity. An EVA copolymer with a higher vinyl acetate content (28 wt %) and a higher melt‐flow index resulted in blends with a broader range of cocontinuity. This effect was more pronounced in blends with lower amounts of PS, that is, when EVA formed the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 386–398, 2003  相似文献   

17.
We studied alcoholysis of vinyl acetate and itaconic acid (up to 8.5 mol %) copolymers. We obtained the copolymers both by single and continuous addition of the second comoner, and carried out the alcoholysis in methanol and methanol-gasoline medium at temperature 30°C using sodium hydroxide as catalyst. We established that the presence of itaconic sequences in the vinyl acetate polymer chain in an amount of 1.5–2 mol % causes significant reduction in the viscosity of methanol solutions without greatly affecting the molecular weight of the copolymer. The alcoholysis of random copolymers, containing not more than 4 mol % itaconic sequences takes place at a higher rate. The vinyl acetate-vinyl alcohol copolymer, containing groups of itaconic acid has better surface activity. This is more clearly expressed in the case of random copolymers.  相似文献   

18.
Thermal degradation of cotton, mercerized cotton, cotton grafted with vinyl acetate-methyl acrylate mixtures at different compositions, and mercerized cotton grafted with vinyl acetate–methyl acrylate mixture at a composition of 60 : 40 has been investigated using the techniques of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) in nitrogen. The kinetic parameters E, n, and A have been obtained following several methods of thermogravimetric analyses. The mercerization shows a little effect upon thermic properties of cotton cellulose, making cotton thermally more stable. Graft copolymerization of vinyl acetate-methyl acrylate mixture makes cotton thermally less stable if the composition of the copolymer grafted is 100, 90, and 70 mol % VA, while in the case of cellulose graft copolymers with compositions of VA–MA of 80 : 20, 20 : 80, 5 : 95, and 0 : 100 the thermal stability is higher than that of original cotton. The thermal stability of the mercerized cotton grafted with vinyl acetate-methyl acrylate mixture with a composition of 60 : 40 depends on the percent grafting yield. The thermal stability of mercerized cotton grafted with the monomer mixture is higher than that of cotton grafted with that monomer mixture. The degradation of cellulose and cellulose graft copolymers is complex as is shown by DTA thermograms and kinetic parameters.  相似文献   

19.
Organic–inorganic nanocomposites consisting of co‐poly(vinyl chloride‐vinyl acetate‐vinyl alcohol) and silica were prepared via sol–gel process. Two types of hybrids were prepared, one in which interactions between hydroxyl group present in the copolymer chain and silanol groups of silica network were developed. In the second set, extensive chemical bonding between the phases was achieved through the reaction of hydroxyl groups on the copolymer chains with 3‐isocyanatopropyltriethoxysilane (ICTS). Hydrolysis and condensation of tetraethoxysilane and pendant ethoxy groups on the chain yielded inorganic network structure. Mechanical and thermal behaviors of the hybrid films were studied. Increase in Young's modulus, tensile strength, and toughness was observed up to 2.5 wt % silica content relative to the neat copolymer. The system in which ICTS was employed as binding agent, the tensile strength and toughness of hybrid films increased significantly as compared to the pure copolymer. Thermogravimetric analysis showed that these nanocomposite materials were stable up to 250°C. The glass transition temperature increases up to 2.5 wt % addition of silica in both the systems. Field emission scanning electron microscope results revealed uniform distribution of silica in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
采用熔融接枝法分别制备了高强度和高熔体流动速率的聚丙烯接枝马来酸酐共聚物,以改善聚丙烯与胶粉间的界面相容性,提高废胶粉/聚丙烯接枝物共混材料的力学性能和流动性.力学性能测试结果表明,随着废胶粉用量的增加,废胶粉/聚丙烯接枝物共混材料的拉伸性能下降,扯断伸长率和缺口冲击强度均增大,熔体流动速率减小,流动性变差.由热重分析...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号