首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
仿晶界型铁素体/粒状贝氏体复相组织的韧性   总被引:18,自引:0,他引:18  
研究了仿晶界型铁素体/粒状贝氏体复相钢轧态组织的韧性与裂纹扩展特点。与单一粒状贝氏体组织相比,仿晶界型铁索体/粒状贝氏体复相组织具有更好的强韧性配合。适量仿晶界型铁素体的存在增加了复相组织的协调变形能力,提高了裂纹形成功:同时使裂纹扩展路径弯曲、分 叉、微裂纹尖端钝化。在一定程度上提高了裂纹扩展力。在粒状贝氏体变的第二阶段(富碳亚稳奥氏体→马氏体/奥氏体(M/A岛)缓冷。已转变的马氏体将进行自回火,并提高残余奥氏体的热稳定性,从而使复相组织的裂纹扩展功得到明显提高。  相似文献   

2.
奥氏体化温度和空冷速率对CFB/M复相钢组织和性能的影响   总被引:1,自引:0,他引:1  
通过Formaster-F热膨胀仪和Gleeble-1500热/力模拟试验机分别模拟了奥氏体化温度为910℃和960℃时不同直径的无碳化物贝氏体/马氏体(CFB/M)复相钢圆棒在空气中的冷却速率,采用光学显微镜和扫描电镜分析了奥氏体化温度和冷却速率对CFB/M复相钢显微组织的影响,测定了CFB/M复相钢的硬度和冲击韧度值.结果表明,在空冷条件下,随圆棒直径增大,CFB/M复相钢的组织由无碳化物贝氏体 马氏体转变成铁素体十无碳化物贝氏体,硬度随之降低,但冲击功却显著增加.提高奥氏体化温度,可抑制铁素体析出,使CFB/M复相钢在更大的冷速范围内获得强韧性好的CFB/M复相组织.  相似文献   

3.
贝氏体/马氏体复相组织对低碳合金钢强韧性的影响   总被引:4,自引:0,他引:4  
对低碳Mn-Cr系和低碳Mn-Si-Cr系低合金钢采用空冷和油淬方式分别处理成贝氏体/马氏体复相组织和马氏体组织,探讨了显微组织和回火温度对钢的强韧性的影响.电镜分析表明,空冷处理的低碳Mn-Cr系和低碳Mn-Si-Cr系低合金钢中的贝氏体分别为典型贝氏体和无碳化物贝氏体.Fbrmaster-F相变仪测定表明经空冷处理后,两种钢复相组织中的贝氏体含量均约为20%.力学性能实验表明,空冷低碳Mn-Cr系合金钢在未回火状态下就具有较高的冲击韧度.低碳Mn-Si-Cr系低合金钢油淬后的低温回火脆性开始温度约为220℃,而空冷后其低温回火脆性开始温度提高至360℃以上.示波冲击实验表明,未回火状态的空冷低碳Mn-Cr系低合金钢和360℃回火后的空冷低碳Mn-Si-Cr系低合金钢具有较高的冲击韧度是由于在该状态下实验钢具有较高的裂纹扩展功所致.因此,空冷低碳Mn-Cr系合金钢可在未回火状态下使用,空冷低碳Mn-Si-Cr系低合金钢必须在回火后使用,经340-360℃回火后,空冷低碳Mn-Si-Cr系低合金钢具有较高的强韧性.  相似文献   

4.
利用SEM、金相显微镜、冲击试验机研究了淬火+回火、贝氏体等温淬火两种热处理工艺对35CrMo钢组织及性能的影响。结果表明,随回火温度提高或贝氏体含量的增加,材料的强度降低、塑韧性增加;回火索氏体组织的冲击断口表现为塑性韧窝状,而贝氏体/马氏体复相组织的冲击断口的纤维区表现为塑性韧窝状,放射区表现为脆性解理断裂;在等强度、塑韧性条件下,回火索氏体裂纹形成功低于贝氏体/马氏体复相组织,当裂纹形成后,回火索氏体组织裂纹扩展功高于贝氏体/马氏体复相组织。  相似文献   

5.
利用X射线衍射仪(XRD) 、扫描电镜(SEM) 、透射电镜(TEM)、室温拉伸和冲击性能测试研究了冷轧对M50钢马氏体/贝氏体(M/B)复相组织和性能的影响。结果表明:20%冷轧变形量的试样经等温淬火后具有最佳的抗拉强度(2535.7 MPa)和冲击性能(96.93 J),相比变形量为0%的试样,冲击吸收能量提高了约21%,抗拉强度提高了约5%。当变形量小于20%时,随着变形量的增加,M/B复相组织逐渐细化且在20%的冷轧变形量下组织最细;当变形量大于20%时,随着变形量的增加,贝氏体束减少,其对马氏体板条的分割作用减弱,导致组织呈现一定的粗化。  相似文献   

6.
利用Gleeble-1500热模拟试验机进行1 000MPa低碳QT钢不同焊接热输入的热模拟试验,研究了焊接热影响区粗晶区(CGHAZ)组织与韧性及其变化规律.结果表明,一次热循环后,随着热输入的增加,冲击韧度先是增加然后下降,组织由马氏体向马氏体(M)与贝氏体(B)的混合组织转变,粗大的M和B组织及板条间和板条内碳化...  相似文献   

7.
硅对Mn-B系空冷贝氏体钢组织与性能的影响   总被引:1,自引:0,他引:1  
研究了硅对中低碳和中碳MnB系空冷贝氏体钢的组织和强韧性的影响。结果表明,硅含量为14%~18%时,钢中的贝氏体组织是由残余奥氏体和贝氏体铁素体所组成的无碳化物贝氏体。冷却后的贝氏体/马氏体复相组织具有良好的强韧性。高硅中低碳钢和中碳钢的断裂韧度分别达到119MPa·m1/2和73MPa·m1/2,显著高于硅含量低的钢。  相似文献   

8.
研究了下贝氏体/马氏体复相热处理工艺对Cr12钢显微组织与性能的影响。Cr12钢于1030℃加热奥氏体化,在280℃等温1~4h,获得不同百分比的下贝氏体/马氏体组织,测定相应的耐磨性及冲击韧性,并与常规热处理的Cr12钢进行了比较。结果表明,7%~10%贝氏体/马氏体复相显微组织能赋予Cr12钢以良好的韧性与耐磨性配合。本文对这种复相组织进行了分析及讨论。自行车把节头的凸袋模系Cr12钢制的冷镦模,采用贝氏体/马氏体复相热处理工艺代替常规的分级淬火,其使用寿命可提高3~4倍,现已应用于生产。  相似文献   

9.
GCr15钢是一种使用量最大的轴承钢,在一般情况下,其淬-回火态组织能够满足机械性能要求,但近来研究发现,经过等温并淬火处理得到的GCr15钢马氏体-贝氏体(M+B下)复合组织具有比单一马氏体组织更优越的强韧性配合,从而引起了人们的兴趣。不过在对其金相组织的显示过程中发现,一般的腐蚀剂腐蚀效果不理想,例如Lepera介绍的腐蚀剂在显示马氏体-铁素体复相组织时染色效果很好,但用在GCr15钢M+B下上则不理想,表现为M和B下衬度差别不大,操作不当还有可能产生假象,并且这种腐蚀  相似文献   

10.
用Q-I-Q(淬火-等温-淬火)热处理新工艺对GDL-1贝氏体钢进行处理,通过改变等温温度和时间,研究工艺参数对力学性能的影响。结果表明,GDL-1钢在Q-I-Q热处理后的组织是马氏体加少量贝氏体和残余奥氏体的复相组织。在320℃等温30 min时冲击韧度达到最大值(108.5 J),340℃等温3 h时抗拉强度达到最大值(1614 MPa),最佳强韧性配合温度为320~340℃。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号