共查询到15条相似文献,搜索用时 59 毫秒
1.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。 相似文献
2.
采用Gleeble-1500热模拟机高温压缩试验,研究5A01铝合金在应变速牢为0.01~1s-1、变形温度为350~450℃条件下的流变行为,并利用光学显微镜分析合金在不同压缩条件下的组织形貌特征.结果表明:应变速率和变形温度的变化强烈影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.采用双曲正弦形式ARRHENIUS的关系来描述5A01铝合金高温压缩变形时的流变应力行为,获得的材料常数A、α、n和Q分别为0.068 31 s-1、0.009 4 MPa-1、2.708 9和161.14 kJ/mol:在应变速率为0.01 s-1及变形温度低于400℃条件下变形时,5A01铝合金组织为纤维组织,而当变形温度升高到450℃时,再结晶程度很高,出现大量等轴晶. 相似文献
3.
采用Gleeble-1500D热模拟试验机进行高温等温压缩变形试验,研究了B95оч铝合金在变形温度为330~450℃、应变速率为0.001~1.000 s-1条件下的热变形行为,并利用金相显微镜(OM)和透射电子显微电镜(TEM)分析了B95оч铝合金在不同变形条件下的组织特征。研究结果表明:变形温度和应变速率对B95оч铝合金的流变应力大小有着显著的影响,合金的流变应力随变形温度的升高而降低,随应变速率的增加而增大。B95оч铝合金在450℃以下热变形过程中析出大量的第二相粒子,并随着温度的降低数量显著增加。B95оч铝合金热变形后平均亚晶尺寸随Zener-Hollomon参数的升高而减小,即随着变形温度的降低、应变速率的升高而减小。B95оч铝合金热变形的流变应力行为可以用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为124.09 kJ·mol-1。 相似文献
4.
在Gleeble-1500热模拟机上,采用高温等温压缩,在应变速率为0.001~10 s-1和变形温度为300℃~500℃条件下对5052铝合金的流变应力行为进行了研究。结果表明:在应变速率为0.1 s-1(变形温度为420℃~500℃)以及应变速率为0.01和0.001(变形温度为300℃~500℃)时,5052铝合金热压缩变形出现了明显的峰值应力,表现为连续动态再结晶特征;在其他变形条件下存在较为明显的稳态流变特征。可采用Zener-Hol-lomon参数的双曲正弦函数来描述5052铝合金高温变形时的流变应力行为;在获得的流变应力σ解析表达式中A、α和n值分别为12.68×1011s-1,0.023MPa-1和5.21;其热变形激活能Q为182.25 kJ/mol。 相似文献
5.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。 相似文献
6.
7.
罐用铝合金的热压缩流变应力行为 总被引:1,自引:0,他引:1
通过对罐用铝合金进行热模拟压缩实验, 分析了变形速率、变形温度等参数对流变应力的影响,计算出了该合金的材料常数,并建立了该合金稳态流变应力模型. 相似文献
8.
9.
采用圆柱试样在Gleeble-1500热/力模拟试验机上进行高温压缩变形试验,研究了2124铝合金在高温塑性变形过程中流变应力的变化规律.试验在变形温度为350~480 ℃、应变速率0.04~10 s-1的条件下进行.结果表明:应变速率和变形温度的变化对合金稳态流变应力有明显的影响,在低应变速率条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出近稳态特征;而在高应变速率条件下,应力出现强烈锯齿波动,达到峰值后随着应变的增加锯齿波动趋于平缓;2124铝合金高温塑性变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述. 相似文献
10.
11.
超高强Al-Zn-Mg-Cu-Zr合金的热变形行为 总被引:8,自引:2,他引:8
采用圆柱试样在Gleeble-1500热模拟机上进行恒温和恒速压缩变形实验,变形温度范围为350~450℃,应变速率范围为0.001~0.1s^-1。研究了。7055铝合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n。结果表明,流变应力随变形温度的升高而降低,随应变速率的提高而增大。可用应力-应变速率方程来描述7055铝合金高温压缩变形时的热变形行为。这种合金在350~450℃温度范围内的热变形组织为发生了动态回复并伴随有少量再结晶的组织。 相似文献
12.
Al-Cu-Mg-Ag合金热压缩变形行为的预测 总被引:1,自引:0,他引:1
采用了热模拟实验机研究了Al-Cu-Mg-Ag耐热铝合金的热压缩变形行为。实验的温度和应变速率分别为340~500℃,0.001~10 s-1。分别用了本构方程和人工神经网络来对Al-Cu-Mg-Ag合金的流变行为进行了分析和模拟。神经网络的结构是3-20-1;输入参数是温度,应变速率和应变;输出参数是流变应力。结果表明该合金的流变曲线出现加工硬化、过渡、软化和稳态流变这4个阶段,流变应力随着应变速率的增加而增大,随着变形温度的下降而减少。用所建立的神经网络模型预测了变形温度和应变速率对流变应力的影响,预测的结果与热压缩变形的基础理论吻合得很好,而且该模型可以很好地描述Al-Cu-Mg-Ag合金的流变应力,在应变速率为0.001~10 s-1的条件下,其平均相对误差分别为3.68%,3.98%,1.53%,3.53%和2.04%。这表明神经网络的预测性能优良,具有很强的推广能力。同时通过本构方程和神经网络的预测结果比较看出神经网络模型的相关系数比较高,而且神经网络比本构方程有更好的预测性能。神经网络可以预测不同应变下的相应的流变应力,但是本构方程只可以根据不同的应变速率和温度来预测峰值应力。 相似文献
13.
14.
15.
《钢铁研究学报(英文版)》2016,(12):1342-1348
A hot compression experiment (1 073-1 473 K,strain rates of 0.001-10 s-1 )of SA508GR.4N low alloy steel was performed using a Gleeble-3800 thermal-mechanical simulator,and the hot deformation behavior of the steel was investigated by analyzing both the true stress-true strain curves and its microstructures.The thermal de-formation equation and hot deformation activation energy (Q)of SA508GR.4N steel were obtained by regression with a classic hyperbolic sine function.The hot processing map of SA508GR.4N steel was also established.An em-pirical equation for the stress peak was described for practical applications.The SA508GR.4N steel showed a critical Zener-Hollomon parameter (lnZc)for dynamic recrystallization (DRX)of 37.44,below which full DRX may occur. The sensitivity of the SA508GR.4N steel increased linearly with test temperature,such that higher temperatures led to enhanced workability. 相似文献