首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了提高Lyocell基炭纤维的得率及其力学性能,制备了不同含量炭黑填充的Lyocell纤维用做炭纤维原丝。采用X-衍射(WAXD)、热重分析(TGA)、扫描电镜(SEM)、强度仪等分析了试样的结构与性能。WAXD表明炭黑填充的LyoceH纤维仍然具有纤维素Ⅱ晶型的结构,同时还保留了炭黑的特征衍射峰;TGA表明该纤维热稳定性不变,添加质量分数为10%和30%炭黑的LyoceH纤维在1000℃时的碳得率可分别提高4.4%和17.1%:SEM显示该纤维表面光滑且截面为圆形,符合优质炭纤维原丝的要求;炭黑填充的Lyocell基炭纤维的WAXD图谱与一般Lyocell基炭纤维图谱不同。选择质量分数为10%的炭黑添加量制备出的Lyocell基炭纤维其强度和模量分别比未填充炭黑的Lyocell基炭纤维提高22%和42%,大样实验已制备出强度和模量分别为0.8GPa和70GPa的炭纤维。  相似文献   

2.
将多壁碳纳米管(MWCNTs)水悬浮液、N-甲基吗啉-N-氧化物(NMMO)溶液及纤维素共混得到纺丝液,通过干湿法制备了Lyocell/MWCNT复合纤维。采用X-衍射仪(WAXD)、扫描电镜(SEM)、透射电镜(TEM)、强度仪等分析了所得纤维的结构和性能。WAXD图谱显示复合纤维仍然具有纤维素II晶型的结构,同时还保留了MWCNTs的特征衍射峰;二维X衍射结果表明:MWCNTs质量分数为5%的复合纤维中,MWCNTs与纤维轴的取向角为±15.2°,说明复合纤维中MWCNTs基本沿着纤维轴取向。SEM结果显示复合纤维中MWCNTs在Lyocell基体中分布均匀。对纤维的力学性能分析进一步表明:添加适量的MWCNTs可使复合纤维的力学性能提高,MWCNTs质量分数为1%的复合纤维的初始模量和强度分别比Lyocell纤维增加49.4%和15.7%。  相似文献   

3.
Lyocell纤维与国产粘胶纤维的对比研究   总被引:10,自引:0,他引:10  
对Lyocell纤维与国产粘胶纤维的结构和性能进行了各方面的对比,小角X-ray衍射测定的孔径分布表明Lyocell纤维所包含的大尺寸孔洞比例少于国产粘胶纤维,广角X-ray衍射分析的结果表明两者具有相似的结晶结构,但前者结晶度明显高于后者;Lyocell纤维的表面形貌的优越性是通过扫描电镜技术体现出来的;统计计算表明,Lyocell的强度明显高于国产粘胶纤维,文中沿用制备国产粘胶基钢纤维的工艺条件成功地制得了Lyocell基炭纤维,并与粘胶基炭纤维进行了强度比较。  相似文献   

4.
用强酸氧化法与等离子体镀膜法分别对原始多壁碳纳米管(MWCNTs)进行表面修饰,制备了MWCNTs改性氰酸酯/环氧树脂基纳米复合材料。对复合材料的断裂面进行SEM分析,研究了表面处理方法对复合材料室温及低温力学性能的影响。结果表明,经等离子体镀膜表面修饰后的MWCNT在基体中分散更为均匀,与基体的界面结合力更强。经等离子体镀膜表面改性后的MWCNTs复合材料,当MWCNTs质量分数为0.3%时,其室温及低温拉伸强度、弹性模量和冲击强度较纯氰酸酯/环氧树脂基体均有不同程度的提高。  相似文献   

5.
为了提高炭纤维的高温抗氧化性能,提出了一种制备Si—B掺杂沥青基炭纤维的方法。通过聚硼硅氮烷(PSNB)和石油沥青低温共裂解合成了Si—B掺杂沥青,Si—B掺杂沥青经熔融纺丝、原丝预氧化和炭化得到Si—B掺杂沥青基炭纤维。研究了Si—B掺杂沥青及其炭纤维的组成、微观结构和低温抗氧化性能。结果表明,随原料沥青中PSNB掺杂比例的提高,Si—B掺杂炭纤维的拉伸强度和杨氏模量逐渐降低,抗氧化性能逐渐增强。1 400℃炭化得到的Si—B掺杂炭纤维在600℃氧化240 min失重率为25%,650℃氧化140 min失重率为60%。未掺杂炭纤维在相同条件下的氧化失重率分别为46%和99%。Si—B掺杂炭纤维氧化形成的B_2O_3具有较好的流动性,可以在纤维表面形成连续的玻璃膜,有效地抑制基体炭的氧化。  相似文献   

6.
利用La(NO_3)_3掺杂后的碳纳米管(MWCNTs-La(NO_3)_3)作为电磁波吸收剂、环氧树脂(EP)作为基体,制备出了MWCNT-La(NO_3)_3/EP复合材料。运用透射电子显微镜和X射线衍射仪对MWCNTs、MWCNT-La(NO_3)_3的微观结构进行了表征,使用示差扫描热分析仪、电子万能试验机、摆锤冲击试验机和矢量网络分析仪对MWCNT/EP、MWCNT-La(NO_3)_3/EP复合材料的电磁性能、热固化行为和力学性能进行了测试分析。结果表明,适量掺杂La(NO_3)_3可以有效改善MWCNTs的复介电常数和磁导率,使MWCNT/EP复合材料在8.2~12.4 GHz频率范围内的介电损耗和磁损耗大幅度提高,吸收电磁波的能力增强。MWCNTs对EP体系的固化具有促进作用。适量掺杂La(NO_3)_3后,这种促进作用具有增强趋势。并且掺杂少量的La(NO_3)_3对MWCNT/EP复合材料的力学性能影响不明显。  相似文献   

7.
聚丙烯腈基炭纤维制备过程中的表面形态和结构研究   总被引:6,自引:8,他引:6  
为了制备高性能的聚丙烯腈基炭纤维,用SEM和TEM等分析方法跟踪炭纤维生产全过程中纤维微观结构所发生的变化。在湿法纺丝中,控制预牵伸倍数为7倍,调整凝固浴的温度为16℃时,可纺出截面近似圆形的高质量原丝,纤维的截面和表面的微纤比较紧凑,表面缺陷和裂纹较少;原丝经过预氧化后仍保持原来的微原纤结构,纤维外部表层的石墨微晶较大,所含孔隙较少,内部的微晶较小且含有大量孔隙。用高锰酸钾改性原丝能够得到质量优异的预氧化纤维,改性预氧丝的纤维基面增加比未改性的多,基面沿纤维轴排列的程度更高。所制备的炭纤维具有由原丝演变来的微观结构,微纤沿纤维轴高度取向,微纤之间有细长的孔隙,并堆砌在一起形成枝化微纤的伸展网络,炭纤维截面形状也近似为圆形。合理调整制备工艺,得到了强度为3.6GPa-4.2GPa,断裂延伸率为1.6%-1.8%,模量为235GPa-240GPa的聚丙烯腈基炭纤维。结果表明:炭纤维的微观组织结构与原丝的微观组织结构密切相关,高强度、高取向度和结构均匀的原丝是获得高强度和高模量炭纤维的前提。  相似文献   

8.
在纤维素/NMMO·H2O溶解纺丝体系中,氯化铵改性得到的Lyocell纤维的结晶结构为纤维素Ⅱ和Ⅲ的混合结晶结构;在相同的纺丝条件下,少量氯化铵存在可以明显改善Lyocell纤维的力学性能,对于平均聚合度为818的棉浆纺丝液(纤维素质量分数为9%),加入0.5%的氯化铵(以纺丝液质量为基准)时,得到的Lyocell纤维拉伸强度比未加氯化铵时提高约30%.通过研究氯化铵对最终Lyocell纤维结构与性能的影响,提出了氯化铵改善Lyocell纤维力学性能的机理模型.  相似文献   

9.
Lyocell基炭纤维表面微结构的STM研究   总被引:2,自引:2,他引:0  
吴琪琳  潘鼎 《新型炭材料》2003,18(3):209-213
采用SEM揭示出Lyocell基炭纤维(LCF)表面比粘胶基炭纤维(RCF)表面光滑,而后者粗糙的表面上还存在裂纹和沟槽,这也是导致RCF强度偏低的一个原因。尝试利用扫描隧道显微镜(STM)的原子级分辨率来研究LCF的表面微结构。在500nm×500nm观测范围内,发现了由25nm宽,150nm长的条状微结构组成的约150nm2大小的沿纤维轴呈近乎45°角排列的块状结构;并测得LCF表面碳原子间距离为0.331nm,结果表明Lyocell基炭纤维表面尚未形成完整的碳网六元环结构。  相似文献   

10.
多壁碳纳米管(MWCNTs)对水泥基材料可起到增强增韧的作用。但MWCNTs易在水泥浆体中团聚,目前国内外对如何深化氧化石墨烯(GO)在水泥浆体中分散MWCNTs的报道较为罕见。采用吸光度试验考察了木质素磺酸钠(MN)存在时,GO对MWCNTs在模拟水泥水化孔隙液的饱和氢氧化钙溶液(CH)中分散性能的影响,并研究了GO对MWCNTs掺配砂浆力学性能、电热性能、电阻率及压敏性的影响。吸光度测试表明MN、GO、MWCNTs质量比为3∶1∶9时,MWCNTs分散达到最佳,力学性能测试表明当MWCNTs、GO最佳掺量分别为0.45wt%、0.05wt%时,28天抗折抗压强度比相同MWCNTs掺量的试件分别提高了27.3%、20.9%,电阻率降低了18.2%,电阻变化率提高了72.6%。微观结构测试表明GO能进一步促进MWCNTs在水泥基材料中分散,促进水泥水化进程,密实了水泥石结构,对MWCNT掺配砂浆强度有协同增长作用,提高了压敏性能。本研究采用GO分散MWCNT的方法可扩展到其他碳基纳米增强剂,并为发展自感知智能化水泥基材料提供了一种新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号