首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
弱电网的主要电气特性之一为高电网阻抗,电网阻抗的增大会改变控制系统受控对象的模型阶数,影响逆变器控制环路增益、带宽和控制性能,对光伏逆变器并网电能质量和稳定运行带来不利影响.为实现电网阻抗的在线检测以进一步优化逆变器控制策略,以弱电网下单相光伏并网逆变器为研究对象,在对其控制系统进行建模与分析基础上,研究基于谐波电流注入的电网阻抗在线检测方法.首先从理论上对单谐波电流注入法和双谐波电流注入法进行对比分析;进而从仿真角度对两种方法在检测精度、逆变器并网电流THD值影响方面进行验证;最后选定双谐波电流注入法作为主要研究方法,该方法周期性地向电网注入两种不同频率的谐波,利用检测元件获得并网点处的电压和电流信息,经由傅里叶分析处理后可得电参量中所包含的特定次谐波分量,进一步计算可得电网阻抗的实时值.实验结果表明:双谐波电流注入法可以实现对电网电阻和电感的准确辨识,与传统单谐波注入法相比,该方法不仅无需计算相角信息,同时具有更高的检测精度.  相似文献   

2.
为了提高Z/Q-Z源逆变器效率、输出电流质量,减小并网电流谐波畸变率,将无差拍并网电流控制策略应用到Z/Q-Z源逆变器中。采用无差拍算法对Z/Q-Z源逆变器进行并网控制,并网电流能够快速跟踪参考电流,实现逆变器单功率因数运行,以及逆变器的数字化控制。建立Z/Q-Z源并网逆变器仿真模型,并对Z/Q-Z源逆变器并网系统进行仿真分析,证明采用无差拍算法并网控制策略的正确性与可行性。仿真结果表明:并网电流总谐波畸变率小于1%,提高了并网电流质量,且Q-Z源逆变器比Z逆变器网络中电容电压值减小半个数量级。另对Z/Q-Z源逆变器进行软启动控制仿真分析,软启动可以有效解决Z源电容电压、逆变桥电压的启动冲击等问题。  相似文献   

3.
为解决异步风力发电机网侧逆变器接入带有非线性负载的电网时存在谐波干扰的问题,采用一种改进的并网逆变器实时电流跟踪谐波抑制方法,建立了风力发电机网侧并网逆变器电压矢量、电流跟踪和扰动的数学模型以及控制系统的谐波电流实时跟踪仿真模型.利用Matlab/Simulink对带非线性负载的并网逆变器控制系统进行电流跟踪谐波抑制仿真,并研究逆变器离网独立运行时对负载的供能过程.仿真结果表明,该实时电流跟踪谐波抑制方法具有良好的跟踪性能和抗扰性能,与传统谐波抑制方法相比具有较强的鲁棒性,为深入研究整个系统的并网逆变以及搭建实验平台提供了依据.  相似文献   

4.
为了抑制电网中因非线性负载和电力电子器件的大量使用而产生的谐波,给出了并网逆变器的给定功率和合成谐波阻抗联合控制策略.该策略能够根据给定的有功功率和无功功率控制系统,并且在电流环电压环上加入了谐波阻抗环.Matlab/Simulink结果显示,该控制策略能够在实现并网逆变器并网的同时起到有效抑制电网谐波的作用.仿真结果表明,此方法能够抑制电流谐波,也使得电网电压谐波得到有效抑制,并避免了电网线路上的谐振.  相似文献   

5.
在分析电压空间矢量的基础上,建立了具有APF功能的光伏并网逆变器的系统模型,采用ip-iq算法进行电流检测,运用SVPWM技术控制,在进行光伏有功并网的同时补偿无功与谐波电流,改善电网质量,用仿真验证了该方案的有效性。  相似文献   

6.
研究电网不对称故障下光伏逆变器的瞬时输出功率特性,结合指令电流的总谐波畸变率的解析推导,提出光伏发电的功率控制算法。考虑光伏逆变器输出电流谐波畸变率限值约束,以有功和无功功率波动的综合幅值最小为目标,建立光伏发电功率控制参数的优化模型。基于无差拍电流跟踪建立光伏发电系统整体模型,利用PSCAD/EMTDC仿真平台验证了该控制策略的可行性。  相似文献   

7.
非线性负载在电网中引入了大量谐波及无功损耗.为改善电网电能质量,提高谐波检测的灵活性,提出了一种融合了自适应线性神经元(adaptive linear neural,Adaline)滤波及对称分量法的谐波检测方法.基于对称分量法的坐标变换后,可由滤波算法分离出负载电流基波正序、负序、零序分量和谐波分量,并可进行组合实现...  相似文献   

8.
研究了一种既能够工作在并网,也能工作在离网状态的逆变器.在市电异常时,并网逆变器能够可靠地切换到离网模态保证本地重要负载供电.重点分析了工作在离网模式下的控制策略及切换方法,通过电感电流无差拍内环控制来实现输出输入电压与电流内环的扰动作用,提高了内环的跟踪速度.在离散域下分析了无差拍模型电感参数的匹配范围,针对数字控制延时降低了模型电感参数匹配范围并引起系统稳定裕度变小的问题,提出了改进型的无差拍电流内环控制,提高了系统的稳定裕度.最后通过实验证明了该控制算法的可行性和优越性,以及适合设计的切换要求.  相似文献   

9.
基于两相旋转坐标,通过对并网逆变器有功功率和无功功率单独控制,实现光伏系统并网发电和本地负载无功补偿一体化运行。Simulink验证了光伏系统输出满足本地负载后余电并网和电网向负载供电两种模式下的要求。  相似文献   

10.
电压型有源滤波器的数学模型呈现非线性特性,采用带有电流预测的无源控制算法对有源滤波的变流器进行控制,可使其具备优良的动、静态特性.建立了并网逆变器欧拉-拉格朗日(Euler La-grange,EL)数学模型,证明了电压型有源滤波器的逆变器是严格无源的,因逆变器具有无源性,所以可以控制能量在逆变器中的重新分布,控制器对吸收有功电流和输出无功电流分别进行控制,使系统能精确控制直流端电压以及快速精确跟踪负载的谐波电流、基波无功电流;然后采用计算机仿真和样机试验来进一步验证该算法的正确性,结果表明所研究的非线性控制策略可使有源滤波器具有明显的补偿效果.  相似文献   

11.
要:阐述了一种含基波串联谐振电路,减小逆变器输出容量的混合有源滤波器工作原理.采用基于瞬时无功功率理论的ip-iq法检测谐波电流,并运用电流跟踪控制的三角载波法控制有源逆变器.在PSCAD/EMTDC下建立混合有源滤波器模型,通过仿真分析可知谐波治理和补偿达到了理想效果.  相似文献   

12.
SPWM逆变电源输出谐波分析及抑制方法研究   总被引:1,自引:0,他引:1  
在SPWM逆变电源输出电压中含有丰富的高频谐波成分,高频谐波在用电设备中引起严重的电磁干扰问题,降低了系统运行的可靠性。通过对SPWM逆变电源的输出谐波分析,提出了一种采用随机调制进行谐波抑制的方法。该方法能使逆变电源的输出电压频谱连续分布而不影响基波分量,使逆变电源的输出谐波能量分布更加均匀,从而降低输出谐波的峰值幅度,减小设备所产生的电磁干扰。通过Simulink软件仿真和实验测试,表明采用随机调制后SPWM逆变电源输出谐波峰值幅度降低了约10 dB。  相似文献   

13.
针对有源滤波器实际工程的需要,提出一种基于瞬时无功功率理论的改进ip-iq谐波和基波无功电流检测方法,可简化复杂的数学变换,能直接应用于三相三线制、三相四线制和单相系统谐波和基波无功电流的检测.并综合考虑FIR滤波器与IIR滤波器的优缺点,进一步提出均值滤波器与Elliptic滤波器串联滤波的二级滤波新方法.仿真结果表明该方法检测实时性好、精度高、易实现,具有实用价值.  相似文献   

14.
提出一种适用于有源电力滤波器补偿电流检测新方法。利用对称基准旋转相量求解基波正序有功电流的幅值,并分剐计算电压、电流与基准旋转相量相位差的正余弦值,从而求出基波功率角,消除基准旋转相量与电网电压的相位偏差。仿真结果表明:该方法在电网电压不对称且畸变的条件下能准确提取基波正序有功电流,适用于有源电力滤波系统中谐波、无功及负序电流的综合补偿。  相似文献   

15.
通过电磁暂态仿真软件PSCAD/EMTDC验证了并联有源电力滤波器的谐波检测算法及滞环控制算法,论证了并联有源电力滤波器主电路中最重要的参数直流侧电容电压设计原则,并在TMS320LF2407中设计了有源滤波器的软件结构.实验表明,基于瞬时无功功率理论的检测算法能满足并联有源电力滤波器的谐波提取要求,直流侧电容电压需要达到一定值才能控制输出指令电流.  相似文献   

16.
基于神经网络的三相电路基波与谐波电流检测   总被引:1,自引:0,他引:1  
分析了三相非线性电流相关分量的构成,给出了一种基于坐标变换的三相电路基波与谐波电流神经网络检测方法.该方法计算工作量小,检测实时性好,检测结果准确.利用该方法,可根据不同的需要,方便地检测正序(负序)基波有功电流、正序(负序)基波无功电流和谐波及畸变电流.  相似文献   

17.
逆变器是分布式光伏发电系统的重要组成部分,为了得到更好的正弦交流电,减小其谐波含量,建立了基于等脉宽调制的分布式光伏发电逆变装置,讨论了等脉宽调制的原理及其计算方法,研究了不同占空比下的输出电压和电流的波形,通过MATLAB仿真软件分析了输出电压和电流的谐波特性.仿真结果表明,利用等脉宽调制方法得出的输出电压和电流的谐波较小,等脉宽调制逆变电路的谐波特性优于PWM脉宽调制逆变电路.  相似文献   

18.
针对有源滤波器谐波电流检测的复杂性以及响应延迟,根据瞬时功率理论,提出了并联型有源滤波器恒功率控制策略。该控制策略通过实现逆变器有功功率和无功功率的解耦,分离出待补偿的功率分量,采用空间矢量调制算法,实现系统的恒功率控制。通过Matlab/Simulink进行仿真验证,结果显示该策略可以有效抑制系统交流侧谐波电流,补偿无功功率,输出稳定的有功功率,改善系统稳态性能,证明了该策略的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号