首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In electrical impedance tomography (EIT), the measured voltages are sensitive to electrode-skin contact impedance because the contact impedance and the current density through it are both high. Large electrodes were used to provide a more uniform current distribution and reduce the contact impedance. A large electrode differs from a point electrode in that it has shunting and edge effects that cannot be modeled by a single resistor. The finite-element method (FEM) was used to study the electric field distributions underneath an electrode, and three models were developed: a FEM model, a simplified FEM model, and a weighted load model. The FEM models considered both shunting and edge effects and closely matched the experimental measurements. It is concluded that FEM models of electrodes can be used to improve the performance of an electrical impedance tomography reconstruction algorithm  相似文献   

2.
深部脑刺激可以有效治疗帕金森病、癫痫、抑郁等疾病。深部脑刺激电极是深部脑刺激系统中的重要组成部分,传统的四触点电极由于通道少,触点面积大,分辨率低,容易刺激不必要的区域从而引起副作用。为提高深部脑刺激的分辨率和精度,设计了一种具有24 个触点的深部脑刺激电极,并利用微机电系统制作技术制作出柔性电极。该柔性电极基底材料为生物相容性良好的聚一氯对二甲苯(Parylene C),导电材料为金。电极触点和焊点均为285 m1 500 m,连接焊点和触点的连接线宽为50 m 。初步电学测试表明,电极具有良好的低阻抗电学性能。使用多触点电极可减小触点尺寸,提高刺激的分辨率,改善脑刺激电极在临床中的治疗效果。  相似文献   

3.
氧化钌/活性炭超电容器电极材料电化学特性   总被引:2,自引:1,他引:1  
介绍一种氧化钌/活性炭复合电极材料的制备方法,并对不同条件下制备的材料的循环伏安特性、交流阻抗特性进行了比较。使用该复合材料组装的模拟电化学超电容器单电极比容量达到359 F/g,远高于普通活性炭材料。与氧化钌电极材料相比,氧化钌/活性炭复合材料的高功率放电特性则有明显的提高。  相似文献   

4.
A low-frequency finite-element method (FEM) developed to calculate the impedance of multi-strip-line electrodes on traveling-wave modulators is discussed. In this method, the divergence theorem is used to evaluate the electrode capacitance from the node potential values of discrete elements. This method is used to calculate the impedance of electrodes on anisotropic-inhomogeneous dielectric media. The effect of nonzero electrode thickness and a groove excavated at the electrode gap is analyzed  相似文献   

5.
During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.  相似文献   

6.
The electrogram sensed by an intracardiac electrode has long been characterized based on two approaches: (1) presuming that the electrode is very small and does not disturb the potential prior to applying the electrode; and (2) taking an average of the prior potential over the electrode surface. In fact, any intracardiac sensing electrode has a finite surface area where electrical charges are induced and disturb the external potential field, thus, the sensed potential is different from the potential prior to placing the electrode. In this paper, an integral equation model is proposed based on the current continuity equation in a homogeneous myocardial medium. The new model can accurately characterize the electrogram sensed by an electrode with a nonnegligible surface area and a load impedance. The new model can be solved numerically via the method of moments to obtain the potential induced on the electrode surface by an arbitrary dipole volume source. As an application of the proposed theory, several electrode configurations with different loads have been analyzed with an intent to show that a finite electrode surface will significantly reduce the electrogram peak amplitude and slope, and a load impedance lower than 20 kΩ will also degrade the electrogram sensitivity  相似文献   

7.
We have found a method to activate electrically smaller nerve fibers without activating larger fibers in the same nerve trunk. The method takes advantage of the fact that action potentials are blocked with less membrane hyperpolarization in larger fibers than in smaller fibers. In our nerve stimulation system, quasitrapezoidal-shaped current pulses were delivered through a tripolar cuff electrode to effect differential block by membrane hyperpolarization. The quasitrapezoidal-shaped pulses with a square leading edge, a 350 microsecond(s) plateau, and an exponential trailing phase ensured the block of propagating action potentials and prevented the occurrence of anodal break excitation. The tripolar cuff electrode design restricted current flow inside the cuff and thus eliminated the undesired nerve stimulation due to a "virtual cathode." Experiments were performed on 13 cats. The cuff electrode was placed on the medial gastrocnemius nerve. Both compound and single fiber action potentials were recorded from L7 ventral root filaments. The results demonstrated that larger alpha motor axons could be blocked at lower current levels than smaller alpha motor axons, and that all alpha fibers could be blocked at lower current levels than gamma fibers. A statistical analysis indicated that the blocking threshold was correlated with the axonal conduction velocity or fiber diameter. This method could be used in physiological experiments and neural prostheses to achieve a small-to-large recruitment order in motor or sensory systems.  相似文献   

8.
In this paper, we characterize the polarization impedance behavior of several common metals in diluted NaCl solution operated at low current densities. The objective was to provide a useful reference for those wishing to calculate the electrode polarization impedance in diluted NaCl solutions. Serial equivalent resistance (R) and capacitance (C) for silver, aluminum, gold, platinum, and medical stainless-steel were measured as a function of frequency (10(-2)-10(3) Hz) and NaCl concentration (2.4-77.0 mmol/L). The ratio of electrode polarization impedance with respect to the bulk resistance was calculated and plotted against concentration for each metal. Such a ratio shows the effect of the electrode polarization contribution as a function of electrolyte concentration when the bulk resistance of the solution changes. All metals showed a decrease of serial resistance Rp and capacitance Cp as a function of frequency. The medical stainless-steel electrode showed largest impedance values at lower frequencies compared to the other electrodes, and was concentration independent at all frequencies. Aluminum had smallest polarization impedance at low frequencies. Pure gold and platinum behaved similar with the exception that the serial resistance for gold showed a lower value at higher frequencies.  相似文献   

9.
Electrical impedance tomography (EIT) is an imaging modality that estimates the electrical properties at the interior of an object from measurements made on its surface. Typically, currents are injected into the object through electrodes placed on its surface, and the resulting electrode voltages are measured. An appropriate set of current patterns, with each pattern specifying the value of the current for each electrode, is applied to the object, and a reconstruction algorithm uses knowledge of the applied current patterns and the measured electrode voltages to solve the inverse problem, computing the electrical conductivity and permittivity distributions in the object. This article focuses on the type of EIT called adaptive current tomography (ACT) in which currents are applied simultaneously to all the electrodes. A number of current patterns are applied, where each pattern defines the current for each electrode, and the subsequent electrode voltages are measured to generate the data required for image reconstruction. A ring of electrodes may be placed in a single plane around the object, to define a two-dimensional problem, or in several layers of such rings, to define a three-dimensional problem. The reconstruction problem is described and two algorithms are discussed, a one-step, two-dimensional (2-D) Newton-Raphson algorithm and a one-step, full three-dimensional (3-D) reconstructor. Results from experimental data are presented which illustrate the performance of the algorithms  相似文献   

10.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。  相似文献   

11.
A new equivalent circuit of a surface-acoustic-wave (SAW) interdigital transducer (IDT) is proposed. A method using this circuit for calculation of the device’s gain-frequency characteristic and impedance is described. The fingers of the transducer can be arbitrarily shaped and positioned. The electrode current is obtained via the rigorous calculation of the SAW-related charge in the piezoelectric substrate and of the charge induced by the former charge in the transducer electrodes. The method allows design of SAW devices with an arbitrary complex finger structure and a multilayer substrate.  相似文献   

12.
Use of balloon impedance catheters (BIC) for the characterization of plaques in vessels can support an optimal medical treatment of plaques. The sensitivity of impedance diagnoses with BIC is related with the distribution of electric fields determined by the electrode configuration. Using the three-dimensional finite element method (FEM) simulation, it was estimated how the relative positions of electrode array to the lipid in the vessel affect on the total impedance magnitude. Further, the short-circuiting effect was investigated with respect to the separation distance on the angular axis between the electrode arrays of angular set. By aid of FEM simulations, it is possible to design the sets of multielectrode arrays which have an optimized resolution for individual vessels.  相似文献   

13.
In this paper, a generalized form of telegrapher's equations for electromagnetic field coupling to buried wires is derived. The presented approach is based on thin-wire antenna theory. The effect of a dissipative half-space is taken into account via the reflection/transmission coefficient approximation. The conductor losses can be taken into account via the surface impedance per unit length. The derived equations are treated numerically via the Galerkin–Bubnov indirect boundary element method. Numerical results are presented for induced current along the wire, and compared with transmission-line (TL) and modified TL (MTL) approximations, respectively, for the case of perfectly conducting electrode buried in a lossy medium. It is shown that the TL and MTL approximations can result in an inaccurate induced current distribution along the conductor at HFs and for shorter electrode lengths, respectively.   相似文献   

14.
In this paper, different integer and fractional-order models are studied from electrical point of view, these models are used to fit the measured impedance data for different types of fruits and vegetables. Experimental work is done on eight different models for six types of fruits to verify the best fitting model. Electric impedance is measured in the range of frequencies (200 mHz–200 Khz) using a non-destructive method, where the tissues are not damaged by electrode insertion. Moreover, two integer order models have been extended to the fractional order domain where data analysis and fitting are applied. The extra degrees of freedom of the fractional order models have enhanced the fitting parameters showing better accuracy. The double Cole Model has been found to be the best fit among different integer and fractional models based on root mean square error (RMSE).  相似文献   

15.
以钇稳定氧化锆(简称YSZ)为固体电解质,Pt/YSZ为电极材料,制备了NOx传感器。采用计时电流法(chronoamperometry)和电化学阻抗法(EIS)研究了Pt/YSZ泵氧电极对O2和NO的响应特性。结果表明,氧气浓度基本不影响电极活化能,在相同测试温度下,随着氧气浓度的增加,泵电流呈直线增加,界面电阻降低;氧气浓度一定时,泵电流与测试温度呈指数关系。特定测试温度下,随着NO浓度增加,泵电流呈指数增长趋势,而界面电阻逐步降低。  相似文献   

16.
A three-dimensional (3-D) model is presented for the calculation of the specific absorption rate (SAR) in human tissue during current source interstitial hyperthermia. The model is capable of millimeter resolution and can cope with irregular implants in heterogeneous tissue. The SAR distribution is calculated from the electrical potential. The potential distribution is determined by the dielectric properties of the tissue and by the electrode configuration. The dielectric properties and the current injection of the electrodes are represented on a 3-D uniform grid. The calculated potential at an electrode current injection point is not the actual electrode potential at that point. To estimate this potential a grid independent representation of an electrode together with an analytical solution in the neighborhood of the electrode are used. The calculated potential on the electrode surface is used to estimate the electrode impedance. The tissue implementation is validated by comparing calculated distributions with analytical solutions. The electrode implementation is verified by comparing different discretizations of an electrode configuration and by comparing numerically calculated electrode impedances with analytically calculated impedances  相似文献   

17.
郑大农  苏向斌  徐应强  牛智川 《红外与激光工程》2021,50(3):20200224-1-20200224-8
利用分子束外延的方法在GaSb衬底上生长GaSb热光伏电池单元,制作了两种不同的1 cm×1 cm面积尺寸的热光伏电池单元,它们有着不同的电极形状。通过不断优化分子束外延的生长条件,以期得到高质量的GaSb外延层。AFM图中显示的表面形貌表明器件有着高质量的外延层,其表面形貌的RMS只有1.5 ? (1 ?=0.1 nm)。测量和比较了两种热光伏电池的器件特性,包括开路电压、短路电流密度、光电转换效率、填充因子以及暗电流密度。在一个模拟太阳光照射下,热光伏电池单元有着0.303 V的开路电压和27.1 mA/cm2的短路电流密度。和只有简单电极形状的热光伏电池单元进行对比,有栅形电极形状的热光伏电池单元在短路电流密度和填充因子上具有更优异的表现。在红外光的照射下,有栅形电极形状的热光伏电池达到了一个最优的填充因子56.8%。  相似文献   

18.
Non-destructive methods for cell characterization are required, for example, for the evaluation of stem cell differentiations or for the long-term monitoring of (nano) materials in vitro. Microelectrode-based chips and electrical impedance spectroscopy can be used to monitor the growth of human mesenchymal stem cells on electrodes or to investigate effects on cell barrier function and on cell adhesion without any chemical marker. In this article, it was investigated how the area of planar disc electrode affects the impedance of cell-covered electrodes. The sensitivity of impedance measurement with cells (defined as the ratio of the impedance magnitude of electrode with cells to the value without cells) was examined with respect to the electrode radius. Under given conditions, the impedance magnitude of cell-covered electrode was most distinguished from the value of uncovered electrode when the electrode radius was 200 μm.  相似文献   

19.
The theory of switching is presented for a structure consisting of a p+-n junction and a metal electrode separated from the N-section of the p+-n junction by a semi-insulating (leaky) layer.

When a negative bias is applied to the electrode, the section of the n-layer under the electrode goes into deep depletion. In this mode, the current through the device is limited by generation in the deeply depleted region. This is the high-impedance or OFF state of the device.

At a sufficiently high voltage, the switching voltage, Vs, the p+-n junction is turned on by either avalanching in the n-layer or by the deep-depletion region extending through to the p+-n region (punch-through). When the junction turns on, the n-section goes from deep-depletion towards inversion. Thus, the voltage across the device decreaseswith a concomitant increase in the current through the device. This is the switching mode. The switching voltage may be tailored by varying the doping and/or width of the n-section.

Following switching, the device comes into the steady-state when the current through the insulating layer is equal to the current flowing across the p+-n junction. The I-V characteristic of this highly conducting (ON state) mode is determined principally by the I-V characteristic of the semi-insulating film. By suitable choice of material this portion of the characteristic can approach zero dynamic impedance, i.e. a near-vertical characteristic, characterized by a low holding voltage. Capacitance and switching characteristics of the device are also discussed.  相似文献   


20.
Electrical impedance imaging is the technique for producing images of the resistivity of internal body structures based on measurements of voltage and current from electrodes applied to the body's surface. When a multiplicity of electrodes are applied in one or more rows around a body structure such as the thorax or limb, it is useful to be able to rapidly assess the general status of the electrode-body interface to determine if the skin has been suitably prepared, and that electrode and skin impedance are suitably low. In addition, assessment of the impedance of individual electrodes should precede acquisition of data for image formation. This communication presents techniques for assessing the overall skin and electrode impedances relative to the impedance of the body interior, and for assessing the integrity of each electrode's contact impedance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号