首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This research is based on a new hybrid approach, which deals with the improvement of shape optimization process. The objective is to contribute to the development of more efficient shape optimization approaches in an integrated optimal topology and shape optimization area with the help of genetic algorithms and robustness issues. An improved genetic algorithm is introduced to solve multi-objective shape design optimization problems. The specific issue of this research is to overcome the limitations caused by larger population of solutions in the pure multi-objective genetic algorithm. The combination of genetic algorithm with robust parameter design through a smaller population of individuals results in a solution that leads to better parameter values for design optimization problems. The effectiveness of the proposed hybrid approach is illustrated and evaluated with test problems taken from literature. It is also shown that the proposed approach can be used as first stage in other multi-objective genetic algorithms to enhance the performance of genetic algorithms. Finally, the shape optimization of a vehicle component is presented to illustrate how the present approach can be applied for solving multi-objective shape design optimization problems.  相似文献   

2.
This paper presents an extension to the basic particle swarm optimization approach for the solution of constrained engineering design optimization problems. The approach takes advantage of the PSO ability to find global optimum in problems with complex design spaces while directly enforcing feasibility of constraints using an augmented Lagrange multiplier method. Details in the algorithm implementation and properties are presented and the effectiveness of the approach is illustrated in different benchmark structural optimization test cases. Results show the ability of the proposed methodology to find better solutions for structural optimization tasks as compared to other optimization algorithms.  相似文献   

3.
There have been increased activities in the study of genetic algorithms (GA) for problems of design optimization. The present paper describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the Cellular Genetic Algorithm approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site, and as in cellular automata computations, takes place on the basis of local interaction with neighboring cells. A focus of the paper is in the adaptation of the cellular genetic algorithm approach in the solution of multicriteria design optimization problems. The proposed paper describes the implementation of this approach and examines its efficiency in the context of representative design optimization problems.  相似文献   

4.
A new procedure for robust and efficient design optimization of inviscid flow problems has been developed and implemented on a wide variety of test problems. The methodology involves the use of an accurate flow solver to calculate the objective function and an approximate, dissipative flow solver, which is used only in the solution of the discrete quasi-time-dependent adjoint problem. The resulting design sensitivities are very robust even in the presence of noise or other non-smoothness associated with objective functions in many high-speed flow problems. The design problem is solved using what we term progressive optimization, whereby a sequence of a partially converged flow solution, followed by a partially converged adjoint solution followed by an optimization step is performed. This procedure is performed using a sequence of progressively finer grids for the solution of the flow field, while only using coarser grids for the adjoint equation solution.This approach has been tested on numerous inverse and direct (constrained) design problems involving two- and three-dimensional transonic nozzles and airfoils as well as supersonic blunt bodies. The methodology is shown to be robust and highly efficient, with a converged design optimization produced in no more than the amount of computational work to perform from 0.5 to 2.5 fine-mesh flow analyses.  相似文献   

5.
Efficient use of iterative solvers in nested topology optimization   总被引:3,自引:3,他引:0  
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the analysis equations. In this study, it is suggested to reduce this computational cost by using an approximation to the solution of the analysis problem, generated by a Krylov subspace iterative solver. By choosing convergence criteria for the iterative solver that are strongly related to the optimization objective and to the design sensitivities, it is possible to terminate the iterative solution of the nested equations earlier compared to traditional convergence measures. The approximation is computationally shown to be sufficiently accurate for the purpose of optimization though the nested equation system is not necessarily solved accurately. The approach is tested on several large-scale topology optimization problems, including minimum compliance problems and compliant mechanism design problems. The optimized designs are practically identical while the time spent on the analysis is reduced significantly.  相似文献   

6.
For solution of reliability-based design optimization (RBDO) problems, single loop approach (SLA) shows high efficiency. Thus SLA is extensively used in RBDO. However, the iteration solution procedure by SLA is often oscillatory and non-convergent for RBDO with nonlinear performance function. This prevents the application of SLA to engineering design problems. In this paper, the chaotic single loop approach (CLSA) is proposed to achieve the convergence control of original iterative algorithm in SLA. The modification involves automated selection of the chaos control factor by solving a novel one-dimensional optimization model. Additionally, a new oscillation-checking method is constructed to detect the oscillation of iterative process of design variables. The computational capability of CLSA is demonstrated through five benchmark examples and one stiffened shell application. The comparison of numerical results indicates that CSLA is more efficient than the double loop approach and the decoupled approach. CSLA also solves the RBDO problems with highly nonlinear performance function and non-normal random variables stably.  相似文献   

7.
There are many optimization problems having the following common property:Given a total task consisting of many subtasks,the problem asks to find a solution to complete only part of these subtasks.Examples include the k-Forest problem and the k-Multicut problem,etc.These problems are called partial optimization problems,which are often NP-hard.In this paper,we systematically study the LP-rounding plus greed approach,a method to design approximation algorithms for partial optimization problems.The approach is simple,powerful and versatile.We show how to use this approach to design approximation algorithms for the k-Forest problem,the k-Multicut problem,the k-Generalized connectivity problem,etc.  相似文献   

8.
This paper applies multi-population differential evolution (MPDE) with a penalty-based, self-adaptive strategy—the adaptive multi-population differential evolution (AMPDE)—to solve truss optimization problems with design constraints. The self-adaptive strategy developed in this study is a new adaptive approach that adjusts the control parameters of MPDE by monitoring the number of infeasible solutions generated during the evolution process. Multiple different minimum weight optimization problems of the truss structure subjected to allowable stress, deflection, and kinematic stability constraints are used to demonstrate that the proposed algorithm is an efficient approach to finding the best solution for truss optimization problems. The optimum designs obtained by AMPDE are better than those found in the current literature for problems that do not violate the design constraints. We also show that self-adaptive strategy can improve the performance of MPDE in constrained truss optimization problems, especially in the case of simultaneous optimization of the size, topology, and shape of truss structures.  相似文献   

9.
Most engineering optimization algorithms are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithms, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search (HS) meta-heuristic algorithm-based approach for engineering optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Various engineering optimization problems, including mathematical function minimization and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to engineering problems than those obtained using current algorithms.  相似文献   

10.
Network design is a very important issue in the area of telecommunications and computer networks, where there is a large need for construction of new networks. This is due to technological development (fiber optics for telecommunication) and new ways of usage (Internet for computer networks). Optimal design of such networks requires formulation and solution of new optimization models. In this paper, we formulate several fixed charge network design models, capacitated or uncapacitated, directed or undirected, possibly with staircase costs, and survivability requirements. We propose a common solution approach for all these problems, based on Lagrangean relaxation, subgradient optimization and primal heuristics, which together form a Lagrangean heuristic. The Lagrangean heuristic can be incorporated into a branch-and-bound framework, if the exact optimal solution must be found. The approach has been tested on problems of various structures and sizes, and computational results are presented.  相似文献   

11.
Topology optimization has been used in many industries and applied to a variety of design problems. In real-world engineering design problems, topology optimization problems often include a number of conflicting objective functions, such to achieve maximum stiffness and minimum mass of a design target. The existence of conflicting objective functions causes the results of the topology optimization problem to appear as a set of non-dominated solutions, called a Pareto-optimal solution set. Within such a solution set, a design engineer can easily choose the particular solution that best meets the needs of the design problem at hand. Pareto-optimal solution sets can provide useful insights that enable the structural features corresponding to a certain objective function to be isolated and explored. This paper proposes a new Pareto frontier exploration methodology for multiobjective topology optimization problems. In our methodology, a level set-based topology optimization method for a single-objective function is extended for use in multiobjective problems, using a population-based approach in which multiple points in the objective space are updated and moved to the Pareto frontier. The following two schemes are introduced so that Pareto-optimal solution sets can be efficiently obtained. First, weighting coefficients are adaptively determined considering the relative position of each point. Second, points in sparsely populated areas are selected and their neighborhoods are explored. Several numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

12.
Control of robust design in multiobjective optimization under uncertainties   总被引:1,自引:1,他引:0  
In design and optimization problems, a solution is called robust if it is stable enough with respect to perturbation of model input parameters. In engineering design optimization, the designer may prefer a use of robust solution to a more optimal one to set a stable system design. Although in literature there is a handful of methods for obtaining such solutions, they do not provide a designer with a direct and systematic control over a required robustness. In this paper, a new approach to robust design in multiobjective optimization is introduced, which is able to generate robust design with model uncertainties. In addition, it introduces an opportunity to control the extent of robustness by designer preferences. The presented method is different from its other counterparts. For keeping robust design feasible, it does not change any constraint. Conversely, only a special tunable objective function is constructed to incorporate the preferences of the designer related to the robustness. The effectiveness of the method is tested on well known engineering design problems.  相似文献   

13.
A solution to the two-degree-of-freedom H-minimization problem that arises in the design of multivariable optimal continuous-time stochastic control systems is derived. A decoupling approach that enables a partially independent design of the prefilter and the feedback controller and yields a simple solution to the optimization problem is applied. This solution is obtained by transforming the optimization problem into two standard form (four-block) problems  相似文献   

14.
Although reliability-based structural optimization (RBSO) is recognized as a rational structural design philosophy that is more advantageous to deterministic optimization, most common RBSO is based on straightforward two-level approach connecting algorithms of reliability calculation and that of design optimization. This is achieved usually with an outer loop for optimization of design variables and an inner loop for reliability analysis. A number of algorithms have been proposed to reduce the computational cost of such optimizations, such as performance measure approach, semi-infinite programming, and mono-level approach. Herein the sequential approximate programming approach, which is well known in structural optimization, is extended as an efficient methodology to solve RBSO problems. In this approach, the optimum design is obtained by solving a sequence of sub-programming problems that usually consist of an approximate objective function subjected to a set of approximate constraint functions. In each sub-programming, rather than direct Taylor expansion of reliability constraints, a new formulation is introduced for approximate reliability constraints at the current design point and its linearization. The approximate reliability index and its sensitivity are obtained from a recurrence formula based on the optimality conditions for the most probable failure point (MPP). It is shown that the approximate MPP, a key component of RBSO problems, is concurrently improved during each sub-programming solution step. Through analytical models and comparative studies over complex examples, it is illustrated that our approach is efficient and that a linearized reliability index is a good approximation of the accurate reliability index. These unique features and the concurrent convergence of design optimization and reliability calculation are demonstrated with several numerical examples.  相似文献   

15.
The formulation of multidisciplinary design, analysis, and optimization (MDAO) problems has become increasingly complex as the number of analysis tools and design variables included in typical studies has grown. This growth in the scale and scope of MDAO problems has been motivated by the need to incorporate additional disciplines and to expand the parametric design space to enable the exploration of unconventional design concepts. In this context, given a large set of disciplinary analysis tools, the problem of determining a feasible data flow between tools to produce a specified set of system-level outputs is combinatorially challenging. The difficulty is compounded in multi-fidelity problems, which are of increasing interest to the MDAO community. In this paper, we propose an approach for addressing this problem based on the formalism of graph theory. The approach begins by constructing the maximal connectivity graph (MCG) describing all possible interconnections between a set of analysis tools. Graph operations are then conducted to reduce the MCG to a fundamental problem graph (FPG) that describes the connectivity of analysis tools needed to solve a specified system-level design problem. The FPG does not predispose a particular solution procedure; any relevant MDO solution architecture could be selected to implement the optimization. Finally, the solution architecture can be represented in a problem solution graph (PSG). The graph approach is applied to an example problem based on a commercial aircraft MDAO study.  相似文献   

16.
This study developed a reliability-based design optimization (RBDO) algorithm focusing on the ability of solving problems with nonlinear constraints or system reliability. In this case, a sampling technique is often adopted to evaluate the reliability analyses. However, simulation with an insufficient sample size often possesses statistical randomness resulting in an inaccurate sensitivity calculation. This may cause an unstable RBDO solution. The proposed approach used a set of deterministic variables, called auxiliary design points, to replace the random parameters. Thus, an RBDO is converted into a deterministic optimization (DO, α-problem). The DO and the analysis of finding the auxiliary design points (β-problem) are conducted iteratively until the solution converges. To maintain the stability of the RBDO solution with less computational cost, the proposed approach calculated the sensitivity of reliability (in the β-problem) with respect to the mean value of the pseudo-random parameters rather than the design variables. The stability of the proposed method was compared to that of the double-loop approach, and many factors, such as sample size, starting point and the parameters used in the optimization, were considered. The accuracy of the proposed method was confirmed using Monte Carlo simulation (MCS) with several linear and nonlinear numerical problems.  相似文献   

17.
One approach to multiobjective optimization is to define a scalar substitute objective function that aggregates all objectives and solve the resulting aggregate optimization problem (AOP). In this paper, we discern that the objective function in quasi-separable multidisciplinary design optimization (MDO) problems can be viewed as an aggregate objective function (AOF). We consequently show that a method that can solve quasi-separable problems can also be used to obtain Pareto points of associated AOPs. This is useful when AOPs are too hard to solve or when the design engineer does not have access to the models necessary to evaluate all the terms of the AOF. In this case, decomposition-based design optimization methods can be useful to solve the AOP as a quasi-separable MDO problem. Specifically, we use the analytical target cascading methodology to formulate decomposed subproblems of quasi-separable MDO problems and coordinate their solution in order to obtain Pareto points of the associated AOPs. We first illustrate the approach using a well-known simple geometric programming example and then present a vehicle suspension design problem with three objectives related to ground vehicle ride and handling.  相似文献   

18.
A method for simulation-based multidisciplinary robust design optimization (MRDO) of problems affected by uncertainty is presented. The challenging aspects of simulation-based MRDO are both algorithmic and computational, since the solution of a MRDO problem typically requires simulation-based multidisciplinary analyses (MDA), uncertainty quantification (UQ) and optimization. Herein, the identification of the optimal design is achieved by a variable-accuracy, metamodel-based optimization, following a multidisciplinary feasible (MDF) architecture. The approach encompasses a variable (i) density of the design of experiments for the metamodel training, (ii) sample size for the UQ analysis by quasi Monte Carlo simulation and (iii) tolerance for the multidisciplinary consistency in MDA. The focus is on two-way steady fluid-structure interaction problem, assessed by partitioned solvers for the hydrodynamic and the structural analysis. Two analytical test problems are shown, along with the design of a racing-sailboat keel fin subject to the stochastic variation of the yaw angle. The method is validated versus a standard MDF approach to MRDO, taken as a benchmark and solved by fully coupled MDA, fully converged UQ, without metamodels. The method is evaluated in terms of optimal design performances and number of simulations required to achieve the optimal solution. For the current application, the optimal configuration shows performances very close to the benchmark solution. The convergence analysis to the optimum shows a promising reduction of the computational cost.  相似文献   

19.
The optimization problem of structural systems with imprecise properties on the basis of a possibilistic approach is considered. System imprecisions are defined by fuzzy numbers and characterized by membership functions. A methodology for the efficient solution of the optimization process is presented. A two-step method is used to include the imprecision within the optimization, where high quality approximations are used for the evaluation of structural responses. The approximations are constructed using concepts of intermediate response quantities and intermediate variables. The approach is basically an algebraic process which can be implemented very efficiently for the optimal design of general structural systems with imprecise parameters. The method provides more information to the designer than is available using conventional design tools. The effectiveness of the methodology and the interpretation of the results are illustrated by the solution of two example problems.  相似文献   

20.
The design of high technology structures aims to define the best compromise between cost and safety. The Reliability-Based Design Optimization (RBDO) allows us to design structures which satisfy economical and safety requirements. However, in practical applications, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational time and weak convergence stability. Traditionally, the solution of the RBDO model is achieved by alternating reliability and optimization iterations. This approach leads to low numerical efficiency, which is disadvantageous for engineering applications on real structures. In order to avoid this difficulty, we propose herein a very efficient method based on the simultaneous solution of the reliability and optimization problems. The procedure leads to parallel convergence for both problems in a Hybrid Design Space (HDS). The efficiency of the proposed methodology is demonstrated on the design of a steel hook, where the RBDO is combined with Finite Element Analysis (FEA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号