首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concept that galanin (GAL) is cosecreted with acetylcholine (ACh) into the ventral hippocampus is a major component of the current model delineating GAL regulation of the cholinergic memory pathways in the rat. Although GAL-immunoreactivity coexists in 50-70% of cholinergic neurons in the basal forebrain (BF) of colchicine-treated rats, the actual coexistence of these neurotransmitters in the basal state may be lower, because colchicine treatment was recently shown to both induce GAL gene expression and inhibit choline acetyltransferase (ChAT) gene expression in this brain region. We have used single and double in situ hybridization histochemistry to examine the distribution and coexistence of GAL and ChAT mRNAs in the BF of male and female rats. Compared with other forebrain regions, few GAL mRNA-expressing neurons are present within the cholinergic fields of the BF. The greatest number of GAL mRNA-expressing cells in this region are located within the nucleus of the horizontal limb of the diagonal band; but, even in this region, they represent only a small percentage (<20%) of ChAT mRNA-expressing cells. Our results indicate that few cholinergic neurons in the rat BF coexpress GAL mRNA and suggest that, in the basal state, GAL is not widely cosecreted with ACh into hippocampal memory centers.  相似文献   

2.
The dorsal raphe nucleus (DR) of the rat was studied with triple labeling immunofluorescence histochemistry to evaluate the quantitative relationships between neurons expressing 5-hydroxytryptamine (5-HT), the neuropeptide galanin (GAL) and the nitric oxide (NO) synthesizing enzyme NO synthase (NOS). In addition retrograde tracing studies were performed. It could be established that a high percentage (between 40 and 60%) of the 5-HT neuron profiles in the ventromedial and dorsomedial subgroups of the DR contained both GAL and NOS after colchicine treatment. This triple coexistence was lower in the dorso-lateral subgroup and much lower in the lateral subgroup (down to 5%). All GAL neuron profiles contained 5-HT, and they constituted up to 80% of all labeled profiles in the rostral ventromedial and caudal dorsomedial subgroups, with the lowest percentage in the lateral subgroup (45%). The percentage of 5-HT-alone neuron profiles in these four subgroups varied between 15-40%. The proportion of 5-HT/NOS neurons was low (a few percent) at all levels, and this was the case also for NOS-alone neuron profiles except in the lateral subgroup, where 10-20% were of this type. It could be established that some 5-HT/GAL/NOS neurons project to the striatum. These retrogradely labeled cells were mainly found in the mid-line subgroups. In the striatum a moderately dense 5-HT fiber network and numerous NOS-positive cell bodies and fibers could be observed. However, only a few, weakly fluorescent GAL fibers were found and in a small number of cases it could be shown or was likely that 5-HT and GAL coexisted. No evidence for coexistence between 5-HT and NOS was obtained. The present findings strongly suggest that a large proportion of the DR 5-HT neurons can synthesize and release two additional messenger molecules, GAL and NO. Furthermore, even if the 5-HT/GAL/NOS neurons project to the striatum, the amounts of GAL and NOS transported to the terminal ramifications in this area are very low. This is in agreement with a very low GAL synthesis in the DR under normal circumstances, which is also indicated by the fact that colchicine treatment is needed to visualize GAL-like immunoreactivity in DR cell bodies. It is possible that NO, and perhaps GAL, in 5-HT neurons exert their main actions at the somatic and dendritic level in the DR.  相似文献   

3.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

4.
We apply a simple method for aligning protein sequences on the basis of a 3D structure, on a large scale, to the proteins in the scop classification of fold families. This allows us to assess, understand, and improve our automatic method against an objective, manually derived standard, a type of comprehensive evaluation that has not yet been possible for other structural alignment algorithms. Our basic approach directly matches the backbones of two structures, using repeated cycles of dynamic programming and least-squares fitting to determine an alignment minimizing coordinate difference. Because of simplicity, our method can be readily modified to take into account additional features of protein structure such as the orientation of side chains or the location-dependent cost of opening a gap. Our basic method, augmented by such modifications, can find reasonable alignments for all but 1.5% of the known structural similarities in scop, i.e., all but 32 of the 2,107 superfamily pairs. We discuss the specific protein structural features that make these 32 pairs so difficult to align and show how our procedure effectively partitions the relationships in scop into different categories, depending on what aspects of protein structure are involved (e.g., depending on whether or not consideration of side-chain orientation is necessary for proper alignment). We also show how our pairwise alignment procedure can be extended to generate a multiple alignment for a group of related structures. We have compared these alignments in detail with corresponding manual ones culled from the literature. We find good agreement (to within 95% for the core regions), and detailed comparison highlights how particular protein structural features (such as certain strands) are problematical to align, giving somewhat ambiguous results. With these improvements and systematic tests, our procedure should be useful for the development of scop and the future classification of protein folds.  相似文献   

5.
The structures capable of synthesizing cyclic GMP in response to nitric oxide in the rat brain were compared relative to the anatomical localization of neuronal nitric oxide synthase. In order to do this, we used brain slices incubated in vitro, where cyclic GMP-synthesis was stimulated using sodium nitroprusside as a nitric oxide-donor compound, in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. Nitric oxide-stimulated cyclic GMP synthesis was found in cells and fibers, but was especially prominent in varicose fibers throughout the rat brain. Fibers containing the nitric oxide-stimulated cyclic GMP production were present in virtually every area of the rat brain although there were large regional variations in the density of the fiber networks. When compared with the localization of nitric oxide synthase, it was observed that although nitric oxide-responsive and the nitric oxide-producing structures were found in similar locations in general this distribution was complementary. Only occasionally was nitric oxide-mediated cyclic GMP synthesis observed in structures which also contained nitric oxide synthase. We conclude that the nitric oxide-responsive soluble guanylyl cyclase and nitric oxide synthase are usually juxtaposed at very short distances in the rat brain. These findings very strongly support the proposed role of nitric oxide as an endogenous activator of the soluble guanylyl cyclase in the central nervous system and convincingly demonstrate the presence of the nitric oxide-cyclic GMP signal transduction pathway in virtually every area of the rat brain.  相似文献   

6.
Two questions were investigated: (1) whether cancer patients (n = 72) and staff (n = 63) have different cognitive representations of the concepts 'caring' (in Swedish: omv?rdnad) and 'clinical care' (in Swedish: v?rd), and (2) whether two different wordings of the response categories used by patients and staff to rank the perceived importance of 50 specific caring behaviors ('Old' response format: 'of importance'--of no importance vs 'New' format: more or less important') in relation to these concepts would produce different results. A Swedish questionnaire version of the CARE-Q instrument was used. Participants were randomized to one of four research conditions: (1) Caring/Old, (2) Caring/New, (3) Clinical care/Old, and (4) Clinical care/New, and asked to rank the importance of the 50 CARE-Q behaviors for that specific concept/response format combination. Results demonstrated that response formats did not affect patient or staff answers. Neither group did to any great extent value CARE-Q behaviors differently when regarded as examples of 'caring' vs 'clinical care'. The assumption that different cognitive representations of the concepts or that a specific wording of response categories had affected previous CARE-Q results was not substantiated.  相似文献   

7.
Morphological and electrophysiological characteristics of magnocellular neurons from basal forebrain nuclei of postnatal rats (11-14 days old) were examined in dissociated cell culture. Neurons were maintained in culture for periods of 5-27 days, and 95% of magnocellular (>23 micron diam) neurons stained positive with acetylcholinesterase histochemistry. With the use of phase contrast microscopy, four morphological subtypes of magnocellular neurons could be distinguished according to the shape of their soma and pattern of dendritic branching. Corresponding passive and active membrane properties were investigated with the use of whole cell configuration of the patch-clamp technique. Neurons of all cell types displayed a prominent (6-39 mV; 6.7-50 ms duration) spike afterdepolarization (ADP), which in some cells reached firing threshold. The ADP was voltage dependent, increasing in amplitude and decreasing in duration with membrane hyperpolarization with an apparent reversal potential of -59 +/- 2.3 (SE) mV. Elevating [Ca2+]o (2.5-5.0 mM) or prolonging spike repolarization with 10 mM tetraethylammonium (TEA) or 1 mM 4-aminopyridine (4-AP), potentiated the ADP while it was inhibited by reducing [Ca2+]o (2.5-1 mM) or superfusion with Cd2+ (100 microM). The ADP was selectively inhibited by amiloride (0.1-0.3 mM or Ni2+ 10 microM) but unaffected by nifedipine (3 microM), omega-conotoxin GVIA (100 nM) or omega-agatoxin IVA (200 nM), indicating that Ca2+ entry was through T-type Ca2+ channels. After inhibition of the ADP with amiloride (300 microM), depolarization to less than -65 mV revealed a spike afterhyperpolarization (AHP) with both fast and slow components that could be inhibited by 4-AP (1 mM) and Cd2+ (100 microM), respectively. In all cell types, current-voltage relationships exhibited inward rectification at hyperpolarized potentials >/=EK (approximately -90 mV). Application of Cs+ (0.1-1 mM) or Ba2+ (1-10 microM) selectively inhibited inward rectification but had no effect on resting potential or cell excitability. At higher concentrations, Ba2+ (>10 microM) also inhibited an outward current tonically active at resting potential (VH -70 mV), which under current-clamp conditions resulted in small membrane depolarization (3-10 mV) and an increase in cell excitability. Depolarizing voltage commands from prepulse potential of -90 mV (VH -70 mV) in the presence of tetrodotoxin (0.5 microM) and Cd2+ (100 microM) to potentials between -40 and +40 mV cause voltage activation of both transient A-type and sustained delayed rectifier-type outward currents, which could be selectively inhibited by 4-AP (0.3-3 mM) and TEA (1-3 mM), respectively. These results show that, although acetylcholinesterase-positive magnocellular basal forebrain neurons exhibit considerable morphological heterogeneity, they have very similar and characteristic electrophysiological properties.  相似文献   

8.
We report here a photoneural regulation of nitric oxide synthase (NOS) activity in the rat pineal gland. In the absence of the adrenergic stimulation following constant light exposure (LL) or denervation, pineal NOS activity is markedly reduced. A maximal drop is measured after 8 days in LL. When rats are housed back in normal light:dark (LD) conditions (12:12), pineal NOS activity returns to normal after 4 days. A partial decrease in pineal NOS activity is also observed when rats are placed for 8 days in LD 18:6 or shorter dark phases, indicating that pineal NOS activity reflects the length of the dark phase. Because it is known that norepinephrine (NE) is released at night from the nerve endings in the pineal gland and this release is blocked by exposure to light, our data suggest that NOS is controlled by adrenergic mechanisms. Our observation may also explain the lack of cyclic GMP response to NE observed in animals housed in constant light.  相似文献   

9.
Nitric oxide (NO) is implicated in a number of inflammatory processes and is an important mediator in animal models of rheumatoid arthritis and in in vitro models of cartilage degradation. The pyridinyl imidazole SB 203580 inhibits p38 mitogen-activated protein (MAP) kinase in vitro, blocks proinflammatory cytokine production in vitro and in vivo, and is effective in animal models of arthritis. The purpose of this study was to determine whether SB 203580 could inhibit p38 MAP kinase activity, NO production, and inducible NO synthase (iNOS) in IL-1 stimulated bovine articular cartilage/chondrocyte cultures. The results indicated that SB 203580 inhibited both IL-1 stimulated p38 MAP kinase activity in isolated chondrocytes and NO production in bovine chondrocytes and cartilage explants with an IC50 value of approximately 1 microM. To inhibit NO production, SB 203580 had to be present in cartilage explant cultures during the first 8 h of IL-1 stimulation, and activity was lost when it was added 24 h following IL-1. SB 203580 did not inhibit iNOS activity, as measured by the conversion of arginine to citrulline, when added directly to cultures where the enzyme had already been induced, but had to be present during the induction period. Using a 372-bp probe for bovine iNOS we demonstrated inhibition of IL-1-induced mRNA by SB 203580 at both 4 and 24 h following IL-1 treatment. The iNOS mRNA levels were consistent with NO levels in 24-h cell culture supernatants of the IL-1-stimulated bovine chondrocytes used to obtain the RNA.  相似文献   

10.
Nitric oxide synthase immunoreactivity was detected in neurons and fibers of the rat pontine medulla. In the medulla, nitric oxide synthase-positive neurons and processes were observed in the gracile nucleus, spinal trigeminal nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus, nucleus ambiguus, medial longitudinal fasciculus, reticular nuclei and lateral to the pyramidal tract. In the pons, intensely labeled neurons were observed in the pedunculopontine tegmental nucleus, paralemniscal nucleus, ventral tegmental nucleus, laterodorsal tegmental nucleus, and lateral and medial parabrachial nuclei. Labeled neurons and fibers were seen in the interpeduncular nuclei, dorsal and median raphe nuclei, central gray and dorsal central gray, and superior and inferior colliculi. Double-labeling techniques showed that a small population (< 5%) of nitric oxide synthase-positive neurons in the medulla also contained immunoreactivity to the aminergic neuron marker tyrosine hydroxylase. The majority of nitric oxide synthase-immunoreactive neurons in the dorsal and median raphe nuclei were 5-hydroxytryptamine-positive, whereas very few 5-hydroxytryptamine-positive cells in the caudal raphe nuclei were nitric oxide synthase-positive. Virtually all nitric oxide synthase-positive neurons in the pedunculopontine and laterodorsal tegmental nuclei were also choline acetyltransferase-positive, whereas nitric oxide synthase immunoreactivity was either low or not detected in choline acetyltransferase-positive neurons in the medulla. The results indicate a rostrocaudal gradient in the intensity of nitric oxide synthase immunoreactivity, i.e. it is highest in neurons of the tegmentum nuclei and neurons in the medulla are less intensely labeled. The majority of cholinergic and serotonergic neurons in the pons are nitric oxide synthase-positive, whereas the immunoreactivity was either too low to be detected or absent in the large majority of serotonergic, aminergic and cholinergic neurons in the medulla.  相似文献   

11.
Changes in water intake after intraperitoneal injection of a nitric oxide synthase (NOS) inhibitor was studied in the rat. Administration of NW-nitro-L arginine methyl ester (L-NAME) at a dose of 50 mg/kg attenuated osmotic thirst induced by intraperitoneal injection of hypertonic saline, but did not affect spontaneous intake of water and thirst induced by subcutaneous injection of angiotension II. Pretreatment with L-arginine significantly attenuated the inhibition of osmotic thirst evoked with subsequent L-NAME. Administration of NW-nitro-D-arginine methyl ester (D-NAME) altered neither the spontaneous nor the osmotic drinking behavior. These findings suggest that NO may affect the osmotically induced drinking.  相似文献   

12.
We examined the role of acetylcholine and nitric oxide in the increases in cerebrocortical blood flow elicited by stimulation of a region of the basal forebrain from which the major cholinergic projection to the cerebral cortex originates. In halothane-anesthetized rats a 3 x 3 mm area of the parietal cortex was exposed and the site was superfused with Ringer (37 degrees C; pH 7.3-7). Cortical blood flow was monitored at the site of superfusion by laser-Doppler flowmetry. The basal forebrain was stimulated electrically (100 microA; 50 Hz) and stimulated sites were histologically verified at the end of the experiment. With Ringer superfusion (n = 8), basal forebrain stimulation increased neocortical flow by 185 +/- 9% (mean +/- S.E.M.). The flow increase was attenuated (-38 +/- 6%; n = 5) by superfusion with the muscarinic cholinergic antagonist atropine (100 microM). Superfusion with atropine plus the nicotinic antagonist mecamylamine (100 microM) did not attenuate the response further (P > 0.05 from atropine alone; n = 6). Superfusion with the nitric oxide synthase inhibitor nitro-L-arginine, but not with the inactive isomer nitro-D-arginine (n = 6), attenuated the vasodilation in a dose-dependent fashion (-43 +/- 4% at 1 mM; n = 7) and reduced nitric oxide synthase catalytic activity at the site of superfusion by 95 +/- 4%. Co-application of nitro-L-arginine and atropine did not attenuate the vasodilation further (P > 0.05 from nitro-L-arginine alone; n = 6). Administration of the somewhat selective inhibitor of neuronal nitric oxide synthase 7-nitroindazole (50 mg/kg, i.p.) attenuated the increases in flow produced by topical application of N-methyl-D-aspartate (40 microM; n = 5) or by hypercapnia (n = 7), but did not affect the vasodilation produced by basal forebrain stimulation (n = 5) and by topical application of acetylcholine (10 microM; n = 5). 7-nitroindazole reduced constitutive nitric oxide synthase enzymatic activity in forebrain by 72 +/- 3% (n = 8). The data suggest that the neocortical vasodilation elicited by basal forebrain stimulation is, in part, mediated by local release of acetylcholine which, in turn, leads to increased nitric oxide synthesis in endothelial cells.  相似文献   

13.
Nitric oxide (NO), generated by inducible NO synthase (iNOS) in migrating macrophages, is increased in glomerulonephritis. This study investigates the effect of NO inhibition on rat nephrotoxic nephritis (NTN) to clarify the role of NO production in glomerular damage. NTN was induced in Sprague Dawley rats by an injection of an anti-glomerular basement membrane (GBM) antibody. Urinary nitrite excretion and nitrite release from kidney slices (5.47 +/- 1.19 versus 2.15 +/- 0.73 nmol/mg protein, NTN versus Control, P < 0.05) were increased in NTN on day 2. Glomerular macrophage infiltration and intercellular adhesion molecule (ICAM)-1 expression increased from day 2. iNOS expression was increased in interstitial macrophages. Glomerular endothelial cell NOS (ecNOS) expression evaluated by counting immunogold particles along GBM was suppressed (0.06 +/- 0.02 versus 0.35 +/- 0.04 gold/micron GBM, P < 0.0001). Glomerular damage developed progressively. NG-nitro-L-arginine methyl ester (L-NAME), which inhibits both iNOS and ecNOS and aminoguanidine (AG), a relatively selective inhibitor for iNOS, equally suppressed nitrite in urine and renal tissue. Glomerular ICAM-1 expression and macrophage infiltration were reduced by L-NAME, but not by AG. Expression of ecNOS was significantly increased by L-NAME (0.91 +/- 0.08, P < 0.0001 versus NTN), but slightly by AG (0.18 +/- 0.04). AG significantly and L-NAME slightly attenuated the glomerular damage at day 4. In conclusion, suppression of iNOS prevents glomerular damage in the early stage of NTN. Treatment by L-NAME reduces macrophage infiltration by suppression of ICAM-1 expression, which may be explained by an increase in ecNOS expression.  相似文献   

14.
Phospholipids are the major constituents of cell membranes, and have numerous structural and functional roles in the nervous system. Although the metabolic pathways responsible for the syntheses of the phosphatides phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and phosphatidylserine (PtdSer) are well understood, the mechanisms controlling these pathways in neural tissue have not been fully characterized. Recent studies have suggested that the main factors controlling PtdCho and PtdEtn synthesis by the Kennedy cycle tend to be the intracellular levels of key substrates for the biosynthetic enzymes, or changes in the activities of the rate-limiting enzymes. Moreover, different control mechanisms may operate, depending upon the functional state of the tissue.  相似文献   

15.
Excitation at widely dispersed loci in the cerebral cortex may represent a neural correlate of consciousness. Accordingly, each unique combination of excited neurons would determine the content of a conscious moment. This conceptualization would be strengthened if we could identify what orchestrates the various combinations of excited neurons. In the present paper, cholinergic afferents to the cerebral cortex are hypothesized to enhance activity at specific cortical circuits and determine the content of a conscious moment by activating certain combinations of postsynaptic sites in select cortical modules. It is proposed that these selections are enabled by learning-related restructuring that simultaneously adjusts the cytoskeletal matrix at specific constellations of postsynaptic sites giving all a similar geometry. The underlying mechanism of conscious awareness hypothetically involves cholinergic mediation of linkages between microtubules and microtubule-associated protein-2 (MAP-2). The first reason for proposing this mechanism is that previous studies indicate cognitive-related changes in MAP-2 occur in cholinoceptive cells within discrete cortical modules. These cortical modules are found throughout the cerebral cortex, measure 1-2 mm2, and contain approximately 10(3)-10(4) cholinoceptive cells that are enriched with MAP-2. The subsectors of the hippocampus may function similarly to cortical modules. The second reason for proposing the current mechanism is that the MAP-2 rich cells throughout the cerebral cortex correspond almost exactly with the cortical cells containing muscarinic receptors. Many of these cholinoceptive, MAP-2 rich cells are large pyramidal cell types, but some are also small pyramidal cells and nonpyramidal types. The third reason for proposing the current mechanism is that cholinergic afferents are module-specific; cholinergic axons terminate wholly within individual cortical modules. The cholinergic afferents may be unique in this regard. Finally, the tapering apical dendrites of pyramidal cells are proposed as primary sites for cholinergic mediation of linkages between MAP-2 and microtubules because especially high amounts of MAP-2 are found here. Also, the possibility is raised that muscarinic actions on MAP-2 could modulate microtubular coherence and self-collapse, phenomena that have been suggested to underlie consciousness.  相似文献   

16.
Penile erection is a nitric oxide (NO)-mediated process that has been shown to be androgen dependent in rats. Castration reduces the activity of the penile enzyme involved in NO synthesis, nitric oxide synthase (NOS). To determine whether adrenal androgens and/or corticosteroids contribute to this control, the following groups of Fischer 344 adult male rats (n = 5-7) were studied: 1) intact, 2) castrated, 3) adrenalectomized alone, 4) castrated/adrenalectomized, 5) castrated/adrenalectomized with aldosterone (1.25 mg/kg, s.c.) and hydrocortisone (12 mg/kg, s.c.), 6) castrated/adrenalectomized with dihydrotestosterone (1.2-cm SILASTIC-brand tubing pellet; Dow Corning, Midland, MI), 7) castrated/adrenalectomized with dehydroepiandrosterone (2-cm tubing), 8) castrated/adrenalectomized with aldosterone (1.25 mg/kg, s.c.), and 9) castrated/adrenalectomized with hydrocortisone (12 mg/kg, s.c.). After 1 week, EFS was applied, and the maximal intracavernosal pressure (MIP) and mean arterial pressure (MAP) were recorded. The MIP/MAP ratio in the adrenalectomized group (0.37) was reduced to values found in the castrated group (0.40). The values in both groups were significantly less than those in intact controls (0.75). The most significant reduction in MIP/MAP was seen in the adrenalectomized/castrated group (0.16). Erectile response in animals submitted to adrenalectomy and castration was restored close to intact values with the administration of hydrocortisone and aldosterone (0.63). Similar results were obtained by the administration of either of the substances alone (0.56 and 0.67, respectively). Penile NOS activity assayed by the L-arginine/citrulline conversion was decreased by 55% in the castrated group compared with that in the intact group, but was not further reduced in the adrenalectomized/castrated or adrenalectomized groups. Penile neuronal NOS protein content, estimated by Western blot, was decreased only in the adrenalectomized/castrated animals (35%), and endothelial NOS content was not affected. These data suggest that the rat adrenal gland contributes to the maintenance of the erectile mechanism and may affect neuronal NOS content in the penis in the rat model. The possibility that hypotension may play a role in the erectile dysfunction observed in adrenalectomized rats cannot be discarded.  相似文献   

17.
Nerve growth factor (NGF) supports the survival and biosynthetic activities of basal forebrain cholinergic neurons and is expressed by neurons within lateral aspects of this system including the horizontal limb of the diagonal bands and magnocellular preoptic areas. In the present study, colormetric and isotopic in situ hybridization techniques were combined to identify the neurotransmitter phenotype of the NGF-producing cells in these two areas. Adult rat forebrain tissue was processed for the colocalization of mRNA for NGF with mRNA for either choline acetyltransferase, a cholinergic cell marker, or glutamic acid decarboxylase, a GABAergic cell marker. In both regions, many neurons were single-labeled for choline acetyltransferase mRNA, but cells containing both choline acetyltransferase and NGF mRNA were not detected. In these fields, virtually all NGF mRNA-positive neurons contained glutamic acid decarboxylase mRNA. The double-labeled cells comprised a subpopulation of GABAergic neurons; numerous cells labeled with glutamic acid decarboxylase cRNA alone were codistributed with the double-labeled neurons. These data demonstrate that in basal forebrain GABAergic neurons are the principal source of locally produced NGF.  相似文献   

18.
Cholinergic neurons in the basal forebrain are the focus of considerable interest because they are severely affected in Alzheimer's disease. However, both cholinergic and noncholinergic neurons are intermingled in this region. The goal of the present study was to characterize the morphology and in vivo electrophysiology of noncholinergic basal forebrain neurons. Neurons in the ventral pallidum and substantia innominata were recorded extracellularly, labeled juxtacellularly with biocytin and characterized for the presence of choline acetyltransferase immunoreactivity. Two types of ventral pallidal cells were observed. Type I ventral pallidal neurons had axons that rarely branched near the cell body and tended to have smaller somata and lower spontaneous firing rates than did type II ventral pallidal neurons, which displayed extensive local axonal arborizations. Subtypes of substantia innominata neurons could not be distinguished based on axonal morphology. These noncholineregic neurons exhibited local axon arborizations along a continuum that varied from no local collaterals to quite extensive arbors. Substantia innominata neurons had lower spontaneous firing rates, more variable interspike intervals, and different spontaneous firing patterns than did type II ventral pallidal neurons and could be antidromically activated from cortex or substantia nigra, indicating that they were projection neurons. Ventral pallidal neurons resemble, both morphologically and electrophysiologically, previously described neurons in the globus pallidus, whereas the substantia innominata neurons bore similarities to isodendritic neurons of the reticular formation. These results demonstrate the heterogeneous nature of noncholinergic neurons in the basal forebrain.  相似文献   

19.
Increased calcium buffering in basal forebrain neurons during aging. J. Neurophysiol. 80: 350-364, 1998. Alterations of neuronal calcium (Ca2+) homeostasis are thought to underlie many age-related changes in the nervous system. Basal forebrain neurons are susceptible to changes associated with aging and to related dysfunctions such as Alzheimer's disease. It recently was shown that neurons from the medial septum and nucleus of the diagonal band (MS/nDB) of aged (24-27 mo) F344 rats have an increased current influx through voltage-gated Ca2+ channels (VGCCs) relative to those of young (1-4. 5 mo) rats. Possible age-related changes in Ca2+ buffering in these neurons have been investigated using conventional whole cell and perforated-patch voltage clamp combined with fura-2 microfluorimetric techniques. Basal intracellular Ca2+ concentrations ([Ca2+]i), Ca2+ influx, Ca2+ transients (Delta[Ca2+]i), and time course of Delta[Ca2+]i were quantitated, and rapid Ca2+ buffering values were calculated in MS/nDB neurons from young and aged rats. The involvement of the smooth endoplasmic reticulum (SER) was examined with the SER Ca2+ uptake blocker, thapsigargin. An age-related increase in rapid Ca2+ buffering and Delta[Ca2+]i time course was observed, although basal [Ca2+]i was unchanged with age. The SER and endogenous diffusible buffering mechanisms were found to have roles in Ca2+ buffering, but they did not mediate the age-related changes. These findings suggest a model in which some aging central neurons could compensate for increased Ca2+ influx with greater Ca2+ buffering.  相似文献   

20.
Members of the beta isozyme subfamily of phosphatidylinositol-specific phospholipase C (PLC) are stimulated by alpha subunits and betagamma dimers of heterotrimeric guanine-nucleotide-binding proteins (G proteins). Myeloid differentiated human HL-60 granulocytes and bovine neutrophils contain a soluble phospholipase C, which is stimulated by the metabolically stable GTP analogue guanosine (5'-->O)-3-thiotriphosphate (GTP[S]). To identify the component(s) involved in mediating this stimulation, the relevant polypeptide(s) was resolved from endogenous phospholipase C and purified from bovine neutrophil cytosol by measuring its ability to confer GTP[S] stimulation to exogenous recombinant PLCbeta2. The resolved factor, which behaved as 48-kDa protein upon gel filtration, stimulated PLCbeta2 but not PLCbeta1 or PLCdelta1. Activation of phosphatidylinositol 4-phosphate 5-kinase was not involved in this stimulation. The purified stimulatory factor consisted of two polypeptides of molecular masses of approximately 23 kDa and 26 kDa. The protein stimulated a deletion mutant of PLCbeta2 that lacked a carboxyl-terminal region necessary for stimulation by members of the alpha(q) subfamily of the G-protein alpha subunits. The results of this study suggest that a GTP-binding protein distinct from alpha(q) subunits, probably a low-molecular-mass GTP-binding protein associated with a regulatory protein, is involved in isozyme-specific activation of PLCbeta2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号