首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 178 毫秒
1.
以溶胶凝胶法合成的亚微米级和市售微米级ZrB_2粉体为原料,B4C和Mo为烧结助剂,在氩气气氛下,常压烧结制得ZrB_2-SiC复相超高温陶瓷材料.研究结果表明,亚微米级ZrB_2超细粉体的加入对ZrB_2-SiC复相陶瓷的常压烧结致密化有一定的促进作用,但对材料性能的影响不太明显.当超细粉体占到粉体质量的30%时,材料的相对密度约为97%.复相材料的三点抗弯强度为(327±56) MPa,弹性模量为(365±30) GPa,维氏硬度和断裂韧性分别为(12.30±0.75) GPa和(3.39±0.35) MPa·m~(1/2).另外,从材料的SEM照片明显看出,在压痕棱角尖端出现裂纹分叉现象,同时在裂纹延伸过程中发生偏转,断裂模式多为穿晶断裂,较少为沿晶断裂.  相似文献   

2.
采用SPS工艺制备添加La_2O_3或LaB_6的ZrB_2-SiC陶瓷,测量试样的密度和力学性能,利用扫描电镜和透射电镜观察试样的微观形貌,研究添加镧的不同化合物对ZrB_2-SiC陶瓷显微结构和力学性能的影响,分析添加量对材料力学性能的影响.同时对ZrB_2-SiC-La_2O_3和ZrB_2-SiC-LaB_6陶瓷进行热处理,考察热处理对其力学性能的影响.结果表明,加入2.5%或5%(质量分数, 下同)的La_2O_3或LaB_6添加剂后,材料的室温强度、高温强度、断裂韧性都比无添加剂时要高;当含量相同时,加入LaB_6比La_2O_3更有利于提高陶瓷材料的室温强度;当添加剂的含量为2.5%时,材料的室温强度比较好,当添加剂的含量为5%时,材料的高温强度和断裂韧性比较高.热处理可以提高ZrB_2-SiC-La_2O_3和ZrB_2-SiC-LaB_6陶瓷材料的高温强度.  相似文献   

3.
采用纳米ZrB_2粉体研究了ZrB_2基超高温陶瓷的放电等离子烧结行为。由于采用纳米粉体,单相ZrB_2在1550℃的低温下即发生快速的致密化烧结。ZrB_2-Si C陶瓷经1800℃放电等离子烧结后可实现完全致密化,并且材料的抗弯曲强度高达1078±162MPa。在1700℃采用放电等离子烧结成功制备了ZrB_2-Si C-Cf复合材料,材料断口表现出明显的纤维拔出现象,导致其具有高的断裂韧性值(6.04 MPa·m~(1/2))和非脆性断裂的模式。同时,ZrB_2-Si C-Cf复合材料具有很高的临界热冲击温差(627℃),表明该材料具有优异的抗热冲击性能。  相似文献   

4.
反应热压烧结BN-ZrB_2-ZrO_2复合材料的显微组织与力学性能   总被引:1,自引:0,他引:1  
采用反应热压烧结工艺制备了BN-ZrB_2-ZrO_2复合材料.ZrB_2由ZrO_2、B4C、C反应生成,反应方程式为2ZrO_2+B_4C+3C=2ZrB_2+4CO↑.通过改变原始ZrO_2的含量,可以得到ZrB_2与ZrO_2比例不同的55%BN-ZrB_2-ZrO_2复合材料.在1600 ℃,90 min,30 MPa的烧结条件下,复合材料的致密度均达到93%以上.复合材料的抗弯强度、断裂韧性随ZrB_2与ZrO_2比例的降低先升高后降低.当复合材料中ZrB_2与ZrO_2比例的为2.5:1时,复合材料的维氏硬度、抗弯强度、弹性模量、断裂韧性分别为1.74 GPa、291 MPa、118 GPa、4.2 MPa·m~(1/2).  相似文献   

5.
采用沉淀法制备了表面包裹Yb_2O_3的ZrB_2-SiC-Yb_2O_3复合粉体(不同含量的Yb_2O_3作为烧结助剂),并在1900℃无压烧结制备了ZrB_2-SiC-Yb_2O_3复合材料.研究Yb_2O_3添加量对复合材料致密化和性能的影响.结果表明,Yb_2O_3的添加在促进ZrB_2-SiC烧结致密的同时,也提高了ZrB2-SiC复合材料的力学性能.添加10% Yb_2O_3(质量分数, 下同)的ZrB_2-SiC复合材料的相对密度为89%,抗弯曲强度为158 MPa,断裂韧性为2.95 MPa·m~(1/2).  相似文献   

6.
采用放电等离子体烧结(SPS)技术制备不同Si C含量的ZrB_2/Si C/Zr_2Al_4C_5复相陶瓷,并对其烧结特性、显微结构、力学性能和抗氧化性能进行了研究。结果表明:掺入Si C化合物促进了复相陶瓷的致密化过程,抑制了ZrB_2晶粒长大;当Si C掺入量为20 vol%时,ZrB_2/Si C/Zr_2Al_4C_5陶瓷的断裂韧性值为4.81 MPa×m~(1/2)。掺入Si C化合物后,复相陶瓷的抗氧化性能得到明显改善,当Si C化合物的含量为20 vol%时,其抗氧化性能最佳,分析其机理发现当掺入Si C化合物后,复相陶瓷高温氧化后在其表面生成了致密稳定的Al_2O_3、B_2O_3-Al_2O_3、Si O_2和Al-Si-O玻璃相等物质,从而阻止了氧原子进入到陶瓷基体中,提高了复相陶瓷的抗氧化性能。  相似文献   

7.
碳化硼-硼化钛复合陶瓷的制备   总被引:2,自引:1,他引:2  
研究了TiB2、TiC、Ti三种添加剂对超细B4C粉末的无压烧结(2 200℃×1 h)密度的影响.结果表明,加入Ti粉末对B4C的烧结没有产生明显的影响,最高密度不超过86%理论密度;而TiB2对B4C的烧结致密化有明显的促进作用,当TiB2含量达到50%时,复合陶瓷的烧结密度达到92%理论密度;TiC对B4C的烧结致密化影响比较复杂,过少或过多时均不能获得最高的烧结密度,当TiC含量为30%时,密度达到最高值(94.5%理论密度).B4C-TiC反应烧结陶瓷由B4C、TiB2、C三相组成.  相似文献   

8.
研究了TiB2、TiC、Ti三种添加剂对超细B4C粉末的无压烧结(2200℃×1h)密度的影响。结果表明,加入Ti粉末对B4C的烧结没有产生明显的影响,最高密度不超过86%理论密度;而TiB2对B4C的烧结致密化有明显的促进作用,当TiB2含量达到50%时,复合陶瓷的烧结密度达到92%理论密度;TiC对B4C的烧结致密化影响比较复杂,过少或过多时均不能获得最高的烧结密度,当TiC含量为30%时,密度达到最高值(94.5%理论密度)。B4C-TiC反应烧结陶瓷由B4C、TiB2、C三相组成。  相似文献   

9.
分别以单斜锆、脱硅锆、单斜锆和脱硅锆的混合物(混合比为1:1)、锆英石和电熔镁砂为原料,制备了直接结合镁锆复合材料.研究了不同组元、不同氧化锆含量和不同烧结温度对MgO-ZrO2材料的显气孔率、常温耐压强度、高温抗折强度、耐热震性等性能和显微结构的影响.研究表明,以锆英石方式加入的镁锆材料由于结合相为镁橄榄石,使得材料显气孔率最低,常温耐压强度最好;而以单斜锆和脱硅锆混合物方式加入的镁锆材料高温抗折强度最好,耐热震性最好;以单斜锆方式加入镁锆材料韧性好.烧结温度应在1730℃左右[11]为宜.  相似文献   

10.
基于非均匀成核法制备ZrB2/B4C陶瓷复合材料   总被引:1,自引:0,他引:1  
以ZrOCl2·8H2O和B4C为主要原料,采用非均匀成核法、原位生成和无压烧结技术制备出ZrB2/B4C陶瓷复合材料.重点探讨了烧结温度对ZrB2/B4C陶瓷复合材料组织结构和性能的影响.结果表明,随着烧结温度的升高,ZrB2/B4C陶瓷复合材料的密度和硬度均为先升高后降低.材料的最佳烧结温度为2060 ℃,烧结时间为0.5 h.在最佳烧结工艺条件下,ZrB2/B4C陶瓷复合材料的相对密度、硬度和断裂韧性分别为96% T.D,42.3 GPa和4.7 MPa·m1/2.  相似文献   

11.
ZrB_2-SiC陶瓷基复合材料抗氧化性能的研究   总被引:1,自引:0,他引:1  
将C纤维增强不同成分配比的ZrB_2-SiC复相陶瓷在1400 ℃下进行静态抗氧化实验,研究了成分配比及氧化时间对材料氧化过程的影响.通过分析氧化后材料的氧化增重率、氧化试样的背散射电子照片,研究氧化过程中ZrB_2-SiC陶瓷微观结构的变化,在此基础上探讨该温度下材料氧化的微观机制.结果表明,氧化初期形成的玻璃相在试样表面形成了一层有效的保护层,这层氧化膜保护层使得该复相陶瓷的氧化机制由反应控制向扩散控制转变,并阻止了材料内部被进一步氧化,且随氧化时间的延长这种保护作用更为明显.  相似文献   

12.
研究了以氮化铝(AlN)为助烧剂的碳化硅晶片(SiC_(pl))增韧二硼化锆(ZrB_2)复合陶瓷材料的制备工艺,并测定其抗弯强度、断裂韧性、致密度和显微硬度.利用扫描电子显微镜(SEM)观察了样品的表面及断面形貌.复合陶瓷中SiC晶片的添加量分别为5%, 10%, 15%以及20%(体积分数, 下同),AlN作为烧结助剂添加量为3%.结果表明:适量SiC晶片的添加提高了SiC_(pl)/ZrB_2复合陶瓷的烧结致密度;SiC_(pl)/ZrB_2复合陶瓷的力学性能比纯ZrB_2陶瓷有所提高,抗弯强度和维氏硬度在5%SiC晶片添加量时达到最大,分别为(625.34±21.46) MPa和(14.60±0.84) GPa;断裂韧性在15%SiC晶片添加量时达到最大值(8.35 ± 0.26) MPa·m~(1/2).断口形貌观察表明主要增韧机制为裂纹偏转与晶片拔出.  相似文献   

13.
首先利用溶胶-凝胶法制备SiO_2-SiC复合粉体,采用SEM、XRD、DSC-TG等技术对复合粉体进行表征.结果表明,溶胶-凝胶法能够制备具有核-壳结构SiO_2-SiC复合粉体.再将SiO_2-SiC复合粉体与BaTiO_3、Fe_3O_4以及环氧树脂以不同比例进行混合固化制得吸波材料样品,采用矢量网络分析仪测量样品的反射率.结果表明,SiO_2-SiC复合粉体具有一定的吸波效果,20%含量的SiO_2-SiC复合粉体样品在18 GHz时反射率达-2.07 dB,BaTiO_3、Fe_3O_4的加入实现复合吸波效果,当SiO_2-SiC:BaTiO_3:Fe_3O_4=6:2:2(体积分数,下同)时,在5.75 GHz时反射率达到-13.97 dB,合格带宽为10.08 GHz.  相似文献   

14.
为了提高铜表面的强度和耐磨性,以复合粉末(Zr、Si、Ni包B4C、Cu)为原料,采用激光辅助原位合成技术,在纯铜基体表面制备了ZrB2-SiC/Cu复合涂层。通过XRD、SEM和TEM分析了复合涂层的表面形貌、微观结构、相组成和界面结合,并测试了不同增强相含量熔覆层的硬度和摩擦学性能。结果表明:通过设计的原位化学反应成功在铜基体内合成了微米级针状ZrB2和纳米级颗粒状SiC。增强相均与基体形成了清洁、无杂相的界面。2种不同维度与尺寸的增强体,通过多种强化机制,显著改善了复合涂层的力学性能;通过调整激光工艺参数可实现增强体尺寸的控制,随着增强相含量的提高,复合涂层的平均硬度和耐磨损性逐渐增加。当增强相含量为30%(质量分数,下同)时,复合涂层的平均硬度(HV0.2)为3028 MPa,约为纯铜的5.6倍。30%增强相涂层的载流磨损率与10%增强相的涂层相比,降低了约80%。较高含量增强相的复合涂层表现出优异的摩擦学性能。  相似文献   

15.
以工业级Si_3N_4粉、FeSi75合金粉、Al_2O_3微粉、SiC颗粒等为原料,在最终温度1450 ℃下保温3 h,氮化反应烧成制备了Sialon-Si_3N_4-SiC复相耐磨材料.采用XRD、SEM等方法分析研究了外加FeSi75合金粉在0%~20%(质量分数, 下同)范围内的不同加入量对制得的复相耐磨材料性能和液固两相流冲蚀磨损的影响.结果表明:当外加FeSi75合金粉达到20%时,试样的体积密度为2.54 g/cm~3,抗弯强度达到71.38 MPa.随着FeSi75合金粉的增加,其耐液固两相流冲蚀磨损性能得到改善,加入20%FeSi75合金粉的试样,在相同实验条件下具有比95 Al_2O_3瓷更优的耐液固两相流冲蚀磨损的性能.  相似文献   

16.
采用Ag-28Cu钎料对ZrB2-SiC陶瓷与Inconel 600镍基合金进行真空钎焊连接。利用扫描电镜、能量色散X射线光谱仪研究了钎焊接头界面结构、断口形貌,借助万能试验机测试其剪切强度。结果表明:采用Ag-28Cu钎料对ZrB2-SiC/Inconel 600真空钎焊,可以实现接头冶金结合,接头无裂纹及微孔隙缺陷。界面反应产物为Ni-Fe-Cr合金、Cu(s,s)+Ag(s,s)固溶体、(Cr,Fe)7C3+(Cr,Fe)3C2合金碳化物,结合扩散理论和热力学分析阐述了界面产物形成机理。钎焊接头室温平均剪切强度为32.92 MPa,断裂模式为解理断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号