首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruneau D  Delmonte S  Pelon J 《Applied optics》1998,37(36):8406-8419
The development of a model for 2-mum laser operation in Tm, Ho:YAG and YLF crystals pumped in the near infrared is reported. This model, based on a simplified spectroscopic scheme, is fitted to a set of characterization experiments by means of three adjustable parameters. Results show that the excited-state populations are predicted with a relative accuracy of approximately 10% for a large range of pump levels. Using this model, we calculate the extractable energy on short-laser-pulse interactions for the two materials under different operation conditions. We study the sensitivity to pump duration and the optimization of dopant concentrations. We investigate the improvement of the extractable-energy efficiency with multiple-pulse operation. For double-pulse operation the improvement is approximately a factor of 1.5 and leads to overall extractable-energy efficiencies of 16% in YAG and 15% in YLF for an absorbed pump energy of 10 J cm(-3).  相似文献   

2.
Shahnazi K 《Applied optics》1998,37(12):2502-2504
The unblended ozone line at 1044.533 cm(-1) was acquired by using the frequency modulation technique. A tunable CO(2) sideband laser with a GaAs waveguide modulator with a tuning bandwidth of 20 GHz in the mid-infrared region was used for this sideband at 1-MHz frequency with a peak-to-peak amplitude of 1 V was imposed on the first tunable sideband. The signal was passed through a 1-m cell and collected with an EG&G detector. The signal-to-noise ratio obtained wasapproximately 100:1.  相似文献   

3.
Atmospheric CO(2) monitoring from space   总被引:2,自引:0,他引:2  
Park JH 《Applied optics》1997,36(12):2701-2712
A spectroscopic method of monitoring the atmospheric CO(2) mixing ratio vertical profile from space is described. An experimental design is presented for a solar occultation mode with the O(2)A band in the visible region to retrieve pressure and temperature profiles first, and then several CO(2) bands in the infrared region at 4.3, 2.7, and 2.0 mum to obtain CO(2) mixing ratio profiles. Instrument techniques considered are low resolution Fourier transform spectrometry and radiometry of various bandwidths. Simulations indicate that the precision of the pressure, temperature, and CO(2) mixing ratio measurements for an altitude region 30-10 km are less than 1%, 1 K, and 1%, respectively, for the case of the Fourier transform spectrometer and approximately 1%, 1 K, and 2% for the case of the radiometer. With careful experimental design, measurements can be made with better precision and also can extend below 10 km. This inferred precision of CO(2) may be considered to be good enough for investigating atmospheric dynamics when CO(2) is used as a tracer and also for measuring spatial and temporal variations of CO(2) mixing ratios in the range of 0.5-6.5% of 350 parts per million by volume in the troposphere and the lower stratosphere.  相似文献   

4.
Zuegel JD  Seka W 《Applied optics》1999,38(12):2714-2723
Nonexponential decay of the 4F(3/2) upper laser state in Nd:YLF was observed with time-resolved fluorescence spectroscopy and small-signal gain probes in low-doped (1.16-at. %) samples when intensely pumped to high population inversions. A rapid initial decay is observed after Q-switched laser pumping, followed by a longer nonexponential decay that is clearly identified as a phase of migration-assisted energy-transfer upconversion (ETU) in the hopping regime. During this phase, a rate-equation treatment is valid and the macroscopic ETU coefficient, alpha2 = (0.98 +/- 0.03) x 10(-16) cm3/s, is directly evaluated from the decay kinetics. The ETU and the migration microparameters are also estimated to be C(da)* approximately 200 x 10(-40) cm6/s and C(dd) approximately 1000 x 10(-40) cm6/s, respectively, and are compared with theoretical values found in the literature. On the basis of these values, rate-equation treatments of intensely pumped Nd:YLF are not strictly valid.  相似文献   

5.
Coherent differential absorption lidar measurements of CO2   总被引:6,自引:0,他引:6  
A differential absorption lidar has been built to measure CO2 concentration in the atmosphere. The transmitter is a pulsed single-frequency Ho:Tm:YLF laser at a 2.05-microm wavelength. A coherent heterodyne receiver was used to achieve sensitive detection, with the additional capability for wind profiling by a Doppler technique. Signal processing includes an algorithm for power measurement of a heterodyne signal. Results show a precision of the CO2 concentration measurement of 1%-2% 1sigma standard deviation over column lengths ranging from 1.2 to 2.8 km by an average of 1000 pulse pairs. A preliminary assessment of instrument sensitivity was made with an 8-h-long measurement set, along with correlative measurements with an in situ sensor, to determine that a CO2 trend could be detected.  相似文献   

6.
A tunable quantum-cascade (QC) laser has been flown on NASA's ER-2 high-altitude aircraft to produce the first atmospheric gas measurements with this newly invented device, an important milestone in the QC laser's future planetary, industrial, and commercial applications. Using a cryogenically cooled QC laser during a series of 20 aircraft flights beginning in September 1999 and extending through March 2000, we took measurements of methane (CH(4)) and nitrous oxide (N(2)O) gas up to ~20 km in the stratosphere over North America, Scandinavia, and Russia. The QC laser operating near an 8-mum wavelength was produced by the groups of Capasso and Cho of Bell Laboratories, Lucent Technologies, where QC lasers were invented in 1994. Compared with its companion lead salt diode lasers that were also flown on these flights, the single-mode QC laser cooled to 82 K and produced higher output power (10 mW), narrower laser linewidth (17 MHz), increased measurement precision (a factor of 3), and better spectral stability (~0.1 cm(-1) K). The sensitivity of the QC laser channel was estimated to correspond to a minimum-detectable mixing ratio for methane of approximately 2 parts per billion by volume.  相似文献   

7.
Seiter M  Sigrist MW 《Applied optics》1999,38(21):4691-4698
The design and application of a novel automated room-temperature laser spectrometer are reported. The compact instrument is based on difference-frequency generation in bulk LiNbO(3). The instrument employs a tunable cw external-cavity diode laser (795-825 nm) and a pulsed diode-pumped Nd:YAG laser (1064 nm). The generated mid-IR nanosecond pulses of 50-muW peak power and 6.5-kHz repetition rate, continuously tunable from 3.16 to 3.67 mum, are coupled into a 36-m multipass cell for spectroscopic studies. On-line measurements of methane are performed at concentrations between 200 ppb (parts in 10(9) by mole fraction) and approximately 1%, demonstrating a large dynamic range of 7 orders of magnitude. Furthermore computer-controlled multicomponent analysis of a mixture containing five trace gases and water vapor with an overall response time of 90 s at an averaging time of only approximately 30 s is reported. A minimum detectable absorption coefficient of 1.1 x 10(-7) cm(-1) has been achieved in an averaging time of 60 s, enabling detection limits in the ppb range for many important trace gases, such as CH(4), C(2)H(6), H(2)CO, NO(2), N(2)O, HCl, HBr, CO, and OCS.  相似文献   

8.
We report on the improvement of a tunable, high resolution, diode laser-based, difference-frequency spectrometer using an AgGaS(2) nonlinear crystal. We use a type-II cut crystal as a part of the improvement compared with a type-I cut, which was used in our preliminary setup. The two tunable laser-diodes are operating near lambda(3)=778 nm (pump) and lambda(2)=842 nm (signal) with a sub-100-kHz linewidth. The high resolution spectrometer is being developed as an alternative to CO(2) laser spectrometers in the 9- to Il-mum range. Using a dual-arm cavity to enhance the two radiation powers, and with 35 mW in front of the 778-nm arm and 100 mW in front of the 842 nm arm, about 70 nW of the tunable 10-mum radiation are generated. This power level is enough to investigate the linear absorption spectroscopy of SF(6). Doppler-limited spectra over 2 GHz, are recorded, showing the wide continuous tunability of the spectrometer.  相似文献   

9.
Calasso IG  Funtov V  Sigrist MW 《Applied optics》1997,36(15):3212-3216
Photoacoustic spectroscopic studies on a mixture of six CO(2) isotopes ((12) C(16) O(2), (12) C(18) O(2), (13) C (16) O(2), (13) C(18) O(2), (16) O(12) C(18) O, and (16) O(13) C(18) O) in the wavelength range of 9-11 mum by use of a home-built high-pressure continuously tunable CO(2) laser with a bandwidth of 0.017 cm(-1) are discussed. The concentrations of all CO(2) isotopes present in the mixture could be determined with good accuracy. Furthermore, the previously unknown absorption cross sections of some important lines of the(12) C(18) O(2), (13) C(18) O(2), and (16)O (13) C(18) O isotopes in the 9-11-mum range are reported.  相似文献   

10.
A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.  相似文献   

11.
The operating characteristics of a pulsed (10 ns) tunable near-infrared (NIR) laser source are described for temperature-jump (T-jump) applications. A Q-switched Nd:YLF laser (approximately 10 ns pulses) with a 1 kHz repetition rate is used to pump a potassium titanyl arsenate (KTA) crystal-based optical parametric oscillator (OPO), producing approximately 1 mJ NIR pulses that are tunable (1.80-2.05 microm) across the 1.9 microm vibrational overtone band of water. This T-jump source has been coupled to a deep ultraviolet (UV) probe laser for Raman studies of protein dynamics. T-jumps of up to 30 degrees C, as measured via the O-H stretching Raman band of water, are readily achieved. Application to cytochrome c unfolding is demonstrated.  相似文献   

12.
Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO(2)) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 microm spectral region that contains three CO(2) absorption lines and is used for aboveground atmospheric CO(2) concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 mum spectral region that contains five CO(2) absorption lines for underground CO(2) soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO(2) release facility. A 0.3 ton CO(2)/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO(2) concentration of 618 parts per million (ppm) over the CO(2) injection site compared with an average background atmospheric CO(2) concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO(2) soil gas concentration of 100,000 ppm during the CO(2) injection, a factor of 25 greater than the measured background CO(2) soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring.  相似文献   

13.
Raman shifting of tunable ArF excimer laser radiation in a mixture of H(2) and D(2) produces tunable radiation in the 224-nm region as a result of Stokes shifting the frequency of the fundamental radiation (193 nm) once in both H(2) and D(2). At a total pressure of 25 bars, a 19% H(2) in D(2) mixture is found to provide a maximum conversion efficiency (2.5%) to the 224-nm range. Both fundamental and 224-nm radiation were used to record laser-induced fluorescence excitation spectra of nitric oxide produced in an oxyacetylene flame. From the excitation spectra, we determined the tuning range of the 224-nm radiation to be 270 cm(-1) with a linewidth of 0.9 cm(-1), which is similar to the fundamental laser radiation. We derived the exact Raman shift of the generated radiation by comparing both excitation spectra which was found to be 7142.3(5) cm(-1).  相似文献   

14.
Repond P  Sigrist MW 《Applied optics》1996,35(21):4065-4085
A novel photoacoustic (PA) system that uses a continuously tunable high-pressure CO(2) laser as radiation source is presented. A minimum detectable absorption coefficient of 10(-6) cm(-1) that is limited mainly by the desorption of absorbing species from the cell walls and by residual electromagnetic perturbation of the microphone electronics has currently been achieved. Although a linear dependence of the PA signal on the gas concentration has been observed over 4 orders of magnitude, the dependence on energy exhibits a nonlinear behavior owing to saturation effects in excellent agreement with a theoretical model. The calibration of the laser wavelength is performed by PA measurements on low-pressure CO(2) gas, resulting in an absolute accuracy of ± 10(-2) cm(-1). PA spectra are presented for carbon dioxide (CO(2)), ammonia (NH(3)), ozone (O(3)), ethylene (C(2)H(4)), methanol (CH(3)OH), ethanol (C(2)H(5)OH), and toluene (C(7)H(8)) in large parts of the laser emission range. The expected improvement in detection selectivity compared with that of studies with line-tunable CO(2) lasers is demonstrated with the aid of multicomponent trace-gas mixtures prepared with a gas-mixing unit. Good agreement is obtained between the known concentrations and the concentrations calculated on the basis of a fit with calibration spectra. Finally, the perspectives of the system concerning air analyses are discussed.  相似文献   

15.
We present measurements of collisional broadening coefficients, obtained at atmospheric pressure, by polarization spectroscopy. Using tunable single mode laser radiation at approximately 2 microm, high-resolution infrared polarization spectra were recorded for CO2-Ar and CO2-He binary mixtures. The recorded polarization spectra were fitted with a Lorentzian cubed function form to obtain the broadening coefficients. The full-width at half-maxima (FWHM) collisional broadening rates of CO2 by Ar and He, for the R14 (12 degrees1<--00 degrees0) line, have been determined to be 0.161+/-0.018 cm-1 atm-1 and 0.1823+/-0.0032 cm-1 atm-1, respectively.  相似文献   

16.
We report frequency measurements for relatively weak H(2)O and (16)O(3) rotational transitions in the ground state and in the nu(2) = 1 vibrationally excited state. We obtained the frequency measurements by using the laboratory technique of tunable far-infrared spectroscopy with the objective of improving H(2)O and O(3) line parameters required for modeling the important atmospheric spectral window near 119 cm(-1). New sets of molecular constants are calculated from the (16)O(3) data, and improved values are reported for the frequencies of the H(2)O lines. The improvement in atmospheric simulations obtained with the new results is illustrated by comparison with recent high-resolution balloon-based atmospheric measurements. These new data significantly improve simulations of high-resolution atmospheric emission spectra.  相似文献   

17.
We report what we believe to be the first systematic study of Doppler-free, nonlinear absorption by use of cavity ringdown spectroscopy. We have developed a variant of cavity ringdown spectroscopy for the mid-infrared region between 9 and 11 microm, exploiting the intracavity power buildup that is possible with continuous-wave lasers. The infrared source consists of a continuous-wave CO2 laser with 1-mW tunable infrared sidebands that couple into a high-finesse stable resonator. We tune the sideband frequencies to observe a saturated, Doppler-free Lamb dip in the nu7, 11(1,10) <-- 11(2,10) rovibrational transition of ethylene (C2H4). Power studies of the Lamb dip are presented to examine the intracavity effects of saturation on the Lamb-dip linewidth, the peak depth, and the broadband absorption.  相似文献   

18.
Kuyanov KE  Momose T  Vilesov AF 《Applied optics》2004,43(32):6023-6029
We developed a pulsed, continuously tunable laboratory laser source for the mid-infrared spectral range of 4.4-8 microm, which is characterized by the spectral linewidth of 0.4 cm(-1). The device is based on the stimulated backward Raman scattering in solid para-hydrogen at T = 4 K. It is pumped by a focused beam obtained from a commercial near-infrared optical parametric oscillator with output energy of approximately 20 mJ (7-ns pulse). Output energies range from 1.7 mJ at 4.4 microm to 120 microJ at 8 microm, which correspond to quantum efficiencies of 0.53 and 0.08, respectively. Spectra of NO, H2O, and CH4 molecules in the mid-infrared were recorded. The operation of the Raman cell pumped with 532-nm radiation was also studied.  相似文献   

19.
An experimental optimization of the efficiency of a gain switched tunable Cr4+:YAG laser at 10 Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34 degrees C and resulted in an output energy of approximately 7 mJ and a pulse duration of approximately 35 ns. Tunability in the range of 1350-1500 nm, spectral linewidth of approximately 200 GHz, and M2<4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr4+:YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.  相似文献   

20.
An extended-cavity diode laser at 852 nm has been built especially for the purpose of cooling and probing cesium atoms. It is a compact, self-aligned, and continuously tunable laser source having a 100-kHz linewidth and 60-mW output power. The electronic control of the laser frequency by the piezodriven external reflector covers a 4.5-kHz bandwidth, allowing full compensation of acoustic frequency noise without any adverse effect on the laser intensity noise. We locked this laser to Doppler-free resonances on the cesium D(2) line by using the Zeeman modulation technique, resulting in the frequency and the intensity of the laser beam being unmodulated. We also tuned the locked laser frequency over a span of 120 MHz by using the dc Zeeman effect to shift the F = 4-F' = 5 reference transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号