首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behaviour of cobalt in molten alkali nitrates in the temperature range from 141 to 321°C has been investigated. At lower temperatures the metal dissolves as Co(II); the oxidation product at higher temperatures is Co3O4. Nitrogen oxides are also formed. Passivation and localized corrosion occur under definite anode potential, Co(II) concentration and temperature conditions. These effects have been studied by non-stationary measurements. Co(II) dissolved in the melt can be electrodeposited either on cobalt or platinum cathodes.  相似文献   

2.
The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.  相似文献   

3.
The formation of Cu2O by the oxidation of Cu in alkaline solutions under various controlled potential conditions has been studied by potentiodynamic methods, the rotating ring disc technique and by employing colloidal Cu(OH)2 electrodes supported on vitreous carbon.The kinetics of the electrochemical reactions, both anodic and cathodic, are interpreted in terms of a complex reaction mechanism involving various intermediates participating in the phase oxide formation, (e.g. adsorbed OH, soluble Cu(I) and metal sites of different activity).Besides the electrochemical reactions the model includes various ageing and surface restructuring processes. The growth mechanism is envisaged to depend on the conditions of oxidation.  相似文献   

4.
Mediated electrochemical oxidation is one of the suitable processes for the destruction of hazardous organic compounds and the dissolution of nuclear wastes at ambient temperature and pressure. The electrochemical oxidation of Co(II) was carried out in an undivided and divided electrochemical cell. The formation of Co(III) was studied in an divided electrochemical cell by varying conditions such as temperature and concentration of nitric acid in a batch type electrochemical reactor in recirculation mode. It was found that the formation of Co(III) increased with increasing nitric acid concentration and decreased with increasing temperatures. The produced Co(III) oxidant was then used for the destruction of phenol. It was noted that phenol could be mineralized to CO2 and water by Co(III) in nitric acid under different nitric acid concentrations and temperatures. The evolved CO2 was continuously measured and used for the calculation of destruction efficiency. The destruction was increased with increasing nitric acid concentration as well as the temperature. The maximum efficiency was observed to be 78% based on CO2 evolution for 5,000 ppm phenol solution at 60 °C in a continuous feed mode. The destruction efficiency was increased 28% by addition of silver at 25 °C.  相似文献   

5.
The electrocatalytic carboxylation of chloroacetonitrile to cyanoacetic acid performed at silver cathodes was investigated both theoretically and experimentally. Silver exhibits powerful electrocatalytic activities towards the reduction of chloroacetonitrile. In CO2-saturated CH3CN, reduction of NCCH2Cl occurs at potentials that are about 0.7 V more positive than those observed at glassy carbon and gives cyanoacetic acid in good yields. Theoretical considerations on the effect of operative parameters on the performances of the process were confirmed by electrocarboxylation experiments performed in undivided cells equipped with sacrificial anodes both in a bench-scale electrochemical batch reactor and in a continuous batch recirculation reaction system equipped with a parallel plate electrochemical cell. Selectivities and Faradic efficiencies higher than 80% were obtained by working under anhydrous conditions both under amperostatic and potentiostatic alimentation at proper values of either current density or applied potential.  相似文献   

6.
The kinetics of the electrochemical oxidation of NO2 ion dissolved in DMSO has been studied on Pt electrodes at temperature ranging from 25 to 44°C, by means of potentiostatic E/I curves and by relaxation techniques.  相似文献   

7.
X-ray photoelectron spectroscopic (XPS) and electrochemical techniques have been applied to the investigation of the surface oxidation of synthetic heazlewoodite (Ni3S2). The XPS data showed that exposure of the sulphide to air resulted in nickel atoms migrating to the surface to form an overlayer of a hydrated nickel oxide and leave a sulphur-rich heazlewoodite. A hydrated nickel oxide was also produced on immersion of heazlewoodite in acetic acid solution in equilibrium with air, despite nickel being soluble under these conditions. After the acetic acid treatment, the S(2p) spectrum had a component at the binding energy of NiS and a small contribution due to sulphur-oxygen species. Voltammetry with bulk heazlewoodite electrodes, and the ground sulphide in a carbon paste electrode, indicated that, at pH 4.6, the initial anodic product was a sulphur-rich heazlewoodite and that oxidation was inhibited when NiS was formed on the surface. Further oxidation to higher nickel sulphides and elemental sulphur occurred at high potentials. In basic solutions, oxidation was restricted due to the formation of nickel oxide.  相似文献   

8.
In this work, the chloride behavior through an electrochemical treatment of brines is examined using ion exchange membranes like in electrodialysis. All experiments have been performed using solutions of NaCl before an application on real brines issued from an Algerian desalination plant. After checking oxidation parameters of chloride oxidation by electrolysis, ion exchange membrane have been introduced to control both the pH and the species migrated. The effect of current density and the membrane nature has been studied. The electrochemical treatment described in this work allows transforming the brines in useful products as NaOH, HCl and Cl2. The pH and the salt concentration are varied and the products obtained at the electrodes were identified and analyzed. It was shown that we can get chlorates according to the current density applied and the fixed pH. This fact gives rise to an economical process where valuable products can be obtained using only the chloride oxidation current. Results were linked to the Pourbaix diagram and allow the prediction of the process efficiency.  相似文献   

9.
The electrochemical membrane reactor of YSZ (yttria-stabilized zirconia) solid electrolyte coated with Pd and Ag as anode and cathode, respectively, has been applied to the partial oxidation of methane to synthesis gas (CO + H2). The Pd|YSZ|Ag catalytic system has shown a remarkable activity for CO production at 773 K, and the selectivity to CO was quite high (96.3%) under oxygen pumping condition at 5 mA. The H2 production strongly depended on the oxidation state of the Pd anode surface. Namely, the H2 treatment of the Pd anode at 773 K for 1 h drastically reduced the rate of H2 production, while air treatment enhanced the H2 production rate. From the results of the partial oxidation of CH4 with molecular oxygen, it is considered that the reaction site of the electrochemical oxidation of CH4 to synthesis gas was the Pd–YSZ–gas-phase boundary (triple-phase boundary). In addition, it is found that the oxygen species pumped electrochemically over the Pd surface demonstrated similar activity to adsorbed oxygen over Pd, PdOad, for the selective oxidation of CH4 to CO, when the Pd supported on YSZ was used as a fixed-bed catalyst for CH4 oxidation with the adsorbed oxygen. The difference with respect to the H2 formation between the electrochemical membrane system and the fixed-bed catalyst reactor results from differences in the average particle size of Pd and the way of the oxygen supply to the Pd surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The effects of high intensity microwave radiation in electrochemistry are summarized and discussed. In situ microwave activation of electrochemical processes has been introduced recently and is possible by placing a carefully designed electrochemical cell directly into a microwave cavity. Self-focusing of intense microwave radiation occurs into a region close to the electrode | solution (electrolyte) interface of a microelectrode placed into the electrochemical cell. The electrode diameter and the electrode material strongly affect the observed mass transport enhancement and temperature effects. Experiments have been conducted to determine the temperature at the electrode surface electrochemically and to quantify the rate of chemical processes which occur in the vicinity of the electrode under high intensity microwave conditions. The effects of microwaves in a wide range of solvent systems from aqueous solutions to organic solvents (DMSO, acetonitrile, DMF, formamide) and in an ionic liquid (BMIM+PF6) have been investigated. Considerable current and temperature enhancements are observed in all solvents and are explained based on the interaction of microwaves with the liquid (electrolyte) and the physical properties of the liquids or solutions.  相似文献   

11.
The electrochemical oxidation of 2-naphthol mediated by active chlorine electrogenerated in situ on a Ti-Ru-Sn ternary oxide has been studied by galvanostatic electrolysis under different experimental conditions. Measurements of chemical oxygen demand (COD), HPLC and GC analyses have been used to follow the oxidation. In the absence of NaCl, only a small fraction of 2-naphthol was oxidized by direct electrolysis, while its complete mineralization was obtained in the case of chlorine-mediated electrolysis. In particular, the rate of naphthol oxidation was found to increase with chloride concentration, pH and to be independent of current density. Analysis of oxidation product has shown that initially organochlorinated compounds have been formed which have been further completely oxidized.  相似文献   

12.
The electrochemical oxidation of cyanuric acid (CA) is examined by bulk electrolyses at boron doped diamond (BDD) electrode. The influence of operating conditions on the reaction trend is investigated and suitable conditions for oxidative demolition of CA are individuated. In particular a strong effect of current density and pH is evidenced, being neutral pH and high current the most favourable conditions to achieve CA mineralisation. The paper also presents the results from atrazine (2-Cl-4-ethylamino-6-isopropylamino-1,3,5-triazine) and 2-Cl-4,6-diammino-1,3,5-triazine oxidation at BDD anode. Triazine compounds are scarcely degraded even with powerful methods such as photocatalytic TiO2-mediated processes, being CA generally obtained as final product of their oxidation. Individuation of favourable conditions for CA demolition has allowed to find suitable conditions to mineralise also triazine compounds.  相似文献   

13.
The oxidation of AISI 316L(NG) stainless steel in simulated pressurised water reactor (PWR) coolant with or without addition of 1 ppm Zn at 280 °C for up to 96 h has been characterised in situ by electrochemical impedance spectroscopy (EIS), both at the corrosion potential and under anodic polarisation up to 0.5 V vs. the reversible hydrogen electrode (RHE). Additional tests were performed in simulated PWR coolant with the addition of 0.01 M Na2B4O7 to exclude the effect of pH excursions probably due to Zn hydrolysis reactions. The thickness and in-depth composition of the oxide films formed at open circuit and at 0.5 V vs. RHE in the investigated electrolytes have been estimated from X-ray photoelectron spectroscopy (XPS) depth profiles. The kinetic and transport parameters characterising the oxide layer growth have been estimated using a calculational procedure based on the mixed conduction model for oxide films. Successful simulations of both the EIS and XPS data have been obtained. The parameter estimates are discussed in terms of the effect of Zn on the oxide layers on stainless steel in PWR conditions.  相似文献   

14.
The electrochemical oxidation of chloranilic acid (CAA) has been studied in acidic media at Pb/PbO2, boron-doped diamond (Si/BDD) and Ti/IrO2 electrodes by bulk electrolysis experiments under galvanostatic control. The obtained results have clearly shown that the electrode material is an important parameter for the optimization of such processes, deciding of their mechanism and of the oxidation products. It has been observed that the oxidation of CAA generates several intermediates eventually leading to its complete mineralization. Different current efficiencies were obtained at Pb/PbO2 and BDD, depending on the applied current density in the range from 6.3 to 50 mA cm−2. Also the effect of the temperature on Pb/PbO2 and BDD electrodes was studied.UV spectrometric measurements were carried out at all anodic materials, with applied current density of 25 and 50 mA cm−2. These results showed a faster CAA elimination at the BDD electrode. Finally, a mechanism for the electrochemical oxidation of CAA has been proposed according to the results obtained with the HPLC technique.  相似文献   

15.
Polyazulene films formed by electrochemical oxidation of azulene have been studied as active components in electrochemical capacitors. The film shows reversible electrochemical behavior in the positive potential range and exhibits p-doping properties. The influence of film formation conditions on the films electrochemical properties has been investigated. A strong effect of solvent on the polyazulene deposition has been observed. The highest yield of film deposition was found for dichloromethane. Polyazulene films also exhibit stable voltammetric properties in aprotic solvents. The voltammetric response of the film is affected by the size of the anion of the supporting electrolyte. In solutions containing tetra(alkyl)ammonium perchlorates, tetrafluoroborates or hexafluorophosphates, reversible oxidation of polyazulene is obtained. In the presence of large tetra(phenyl)borate anions, polyazulene is irreversibly oxidized upon electrochemical oxidation. The capacitance properties of these materials have been investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The polyazulene film displays a relatively high specific capacitance close to 400 F g−1. Such high value of Cs locates this material among very good polymeric redox pseudo-capacitors.  相似文献   

16.
The carbon nanotube (CNT) synthesised by the template carbonisation of polypyrrole on alumina membrane has been used as the support for Pt-WO3, Pt-Ru, and Pt. These materials have been used as the electrodes for methanol oxidation in acid medium in comparison with E-TEK 20 wt% Pt and Pt-Ru on Vulcan XC72R carbon. The higher electrochemical surface of the carbon nanotube (as evaluated by cyclic voltammetry) has been effectively used to disperse the catalytic particles. The morphology of the supported and unsupported CNT has been characterised by scanning electron micrograph and high-resolution transmission electron micrograph. The particle size of Pt, Pt-Ru, and Pt-WO3 loaded CNT was found to be 1.2, 2, and 5 nm, respectively. The X-ray photoelectron spectra indicated that Pt and Ru are in the metallic state and W is in the +VI oxidation state. The electrochemical activity of the methanol oxidation electrode has been evaluated using cyclic voltammetry. The activity and stability (evaluated from chronoamperometric response) of the electrodes for methanol oxidation follows the order: GC/CNT-Pt-WO3-Nafion>GC/E-TEK 20% Pt-Ru/Vulcan Carbon-Nafion>GC/CNT-Pt-Nafion>GC/E-TEK 20% Pt/Vulcan carbon-Nafion>Bulk Pt. The amount of nitrogen in the CNT plays an important role as observed by the increase in activity and stability of methanol oxidation with N2 content, probably due to the hydrophilic nature of the CNT.  相似文献   

17.
Electrochemical and peroxidase-catalyzed oxidation of epinephrine (EPI) has been studied. In the electrochemical studies a single well-defined, 4e, 4H+, pH-dependent oxidation peak was observed in square wave and cyclic sweep voltammetry at edge plane pyrolytic graphite electrode. In the reverse sweep a redox couple was observed. The decay of the UV-absorbing intermediate generated and the first-order rate constants were calculated at different pH and were found to be ~6.3 × 10?3 s?1. The detection limit and sensitivity are found to be 17 × 10?8 M and 2.325 μA μM?1 respectively. At pH 7.2, the electro-oxidation product was characterized using NMR and DEPT studies as leucoadrenochrome. The peroxidase-catalyzed oxidation was carried out using horseradish peroxidase and initiated by adding H2O2. The identical spectral changes, rate constants and product formed during electrochemical and enzymatic oxidation suggest that the same intermediate species is generated during both the oxidations. A tentative pathway for the oxidation of EPI has been suggested. It is concluded that the electrochemical and peroxidase-catalyzed oxidation of EPI proceed by an identical pathway.  相似文献   

18.
This study summarizes the effect of the electrochemical promotion of catalysis (EPOC) by using potassium conductors in environmental catalytic reactions applied to the removal of several automotive pollutants, such us CO, C3H6 and nitrogen oxides (N2O and NOx). It has been shown the extraordinarily potential of using Pt/K–βAl2O3 in a wide variety of environmental reactions (oxidation, reduction), activating the catalyst at lower reaction temperatures and decreasing the inhibitory effect of poisons such as water in the reaction atmosphere. In addition, a new application of potassium conductors-based electrochemical catalysts has been developed for the NOx storage/reduction process (NSR). The idea of coupling catalysis and solid-state electrochemistry on this process would allow to improve and simplify the current NSR technology. Finally, the results have been obtained under reaction conditions compatible with the treatment of automotive exhaust emissions. This demonstrates the potential for the practical use of the phenomenon of electrochemical promotion by using potassium conductors on this kind of process.  相似文献   

19.
Electrochemical oscillations during the anodic oxidation of formaldehyde (HCHO) were studied on a modified electrode of platinum particles highly dispersed in the three-dimensional pore networks of TiOx/Ti (Pt-TiOx/Ti). Under conditions of room temperature and stationary electrode, not only current oscillations under both cyclic voltammetric and potentiostatic conditions but also potential oscillations under galvanostatic conditions were obtained. The intensity of current oscillations strongly depends on the concentration of HCHO or H2SO4, upper potential limit (upl) of cyclic voltammetry, applied constant potential and duration of time (td) at constant potential. Potential oscillations exhibit various patterns such as periodic, quasi-periodic, mixed-mode oscillations and other different bifurcations, which are greatly effected by the applied constant current and the concentration of HCHO or H2SO4. Meanwhile, the oscillatory system has a bistable characteristic with stable states at both low and high potentials. The observed potential and current oscillations are caused by the cyclic formation/removal of intermediate poison CO from the electrode surface during HCHO oxidation. The highly dispersed Pt particles on the surface of Pt-TiOx/Ti electrode improve the electrocatalytic activity of the electrode, which greatly facilitates the formation of CO by the oxidation of HCHO and the removal of CO by its reaction with hydroxyl radicals (OH). Furthermore, the three-dimensional pore networks of the electrode's TiOx/Ti support are favorable to the adsorption/desorption of reactants or intermediate product and thus increase the rate of reactions giving rise to electrochemical oscillations.  相似文献   

20.
Some aspects of the electrochemistry of the flotation of pyrrhotite   总被引:4,自引:0,他引:4  
The iron sulfide mineral, pyrrhotite (Fe(1–x)S), has long been known to be more difficult to recover by flotation from alkaline slurries than many other base metal sulfide minerals. This paper summarizes the results of an electrochemical study of the surface reactions that occur during the flotation of nickeliferous pyrrhotite in the recovery of nickel and the platinum group metals. Mixed potential measurements conducted with natural pyrrhotite electrodes in various stages of an operating flotation plant showed that the mineral potential is positive to the equilibrium potential of the xanthate/dixanthogen couple. Similar results were obtained during batch flotation experiments and in synthetic solutions in the laboratory. Cyclic voltammetric and potentiostatic current/time transient experiments were used to investigate the oxidation of pyrrhotite under various conditions. In addition, the reduction of oxygen, the reaction of copper ions and the oxidation of xanthate ions at the mineral surface were investigated. The formation of dixanthogen on pyrrhotite surfaces is thermodynamically favourable in plant flotation slurries. However the interaction with xanthate at pH values above 7 is inhibited by a surface species formed during the conditioning prior to xanthate addition. In acidic solutions copper ions react readily with pyrrhotite to form a species, possibly CuS that can be oxidized at potentials above 0.4 V. At pH 9 this species does not form and there is no electrochemical reaction between pyrrhotite and copper ions. The beneficial effects of copper ions to flotation performance appear to be related to an enhancement of the oxidation of xanthate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号