首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Accident prediction models (APMs) have been extensively used in site ranking with the objective of identifying accident hotspots. Previously this has been achieved by using a univariate count data or a multivariate count data model (e.g. multivariate Poisson-lognormal) for modelling the number of accidents at different severity levels simultaneously. This paper proposes an alternative method to estimate accident frequency at different severity levels, namely the two-stage mixed multivariate model which combines both accident frequency and severity models. The accident, traffic and road characteristics data from the M25 motorway and surrounding major roads in England have been collected to demonstrate the use of the two-stage model. A Bayesian spatial model and a mixed logit model have been employed at each stage for accident frequency and severity analysis respectively, and the results combined to produce estimation of the number of accidents at different severity levels. Based on the results from the two-stage model, the accident hotspots on the M25 and surround have been identified. The ranking result using the two-stage model has also been compared with other ranking methods, such as the naïve ranking method, multivariate Poisson-lognormal and fixed proportion method. Compared to the traditional frequency based analysis, the two-stage model has the advantage in that it utilises more detailed individual accident level data and is able to predict low frequency accidents (such as fatal accidents). Therefore, the two-stage mixed multivariate model is a promising tool in predicting accident frequency according to their severity levels and site ranking.  相似文献   

2.
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号