首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanosized Mn3O4 particles were prepared by microwave-assisted reflux synthesis method. The prepared sample was characterized using various techniques such as X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman analysis, and transmission electron microscopy (TEM). Electrochemical properties of Mn3O4 nanoparticles were investigated using cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge analysis in different electrolytes such as 1 M KCl, 1 M Na2SO4, 1 M NaNO3, and 6 M KOH electrolytes. XRD pattern reveals the formation of single-phase Mn3O4 nanoparticles. The FT-IR and Raman analysis also assert the formation of Mn3O4 nanoparticles. The TEM image shows the spherical shape particles with less than 50 nm sizes. Among all the electrolytes, the Mn3O4 nanoparticles possess maximum specific capacitance of 94 F g−1 in 6 M KOH electrolyte calculated from CV. The order of capacitance obtained by various electrolytes is 6 M KOH > 1 M KCl > 1 M NaNO3 > 1 M Na2SO4. The EIS and galvanostatic charge–discharge results further substantiate with the CV results. The cycling stability of Mn3O4 electrode reveals that the prepared Mn3O4 nanoparticles are a suitable electrode material for supercapacitor application.  相似文献   

2.
Spherical LiNi1/2Mn1/2O 2 powders were synthesized from LiOH . H2O and coprecipitated metal hydroxide, (Ni1/2Mn1/2)(OH)2. The average particle size of the powders was about 10 m and the size distribution was quite narrow due to the homogeneity of the metal hydroxide, (Ni1/2Mn1/2)(OH)2. The tap-density of the LiNi1/2Mn1/2O2 powders was approximately 2.2 g cm–3, which is comparable to the tap-density of commercial LiCoO2. The LiNi1/2Mn1/2 O2electrode delivered a discharge capacity of 152, 163, 183, and 189 mA h g–1 in the voltage ranges of 2.8–4.3, 2.8–4.4, 2.8–4.5, and 2.8–4.6 V, respectively, with good cyclability. Furthermore, Al(OH)3-coated LiNi1/2Mn1/2O2exhibited excellent cycling behavior and rate capability compared to the pristine electrode.  相似文献   

3.
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.  相似文献   

4.
The effect of surface area on the electrochemical properties and thermal stability of Li[Ni0.2Li0.2Mn0.6]O2 powders was characterized using a charge/discharge cycler and DSC (Differential Scanning Calorimeter). The surface area of the samples was successfully controlled from ~4.0 to ~11.7 m2 g−1 by changing the molar ratio of the nitrate/acetate sources and adding an organic solvent such as acetic acid or glucose. The discharge capacity and rate capability was almost linearly increased with increase in surface area of the sample powder. A sample with a large surface area of 9.6–11.7 m2 g−1 delivered a high discharge capacity of ~250 mAh g−1 at a 0.2 C rate and maintained 62–63% of its capacity at a 6 C rate versus a 0.2 C rate. According to the DSC analysis, heat generation by thermal reaction between the charged electrode and electrolyte was not critically dependent on the surface area. Instead, it was closely related to the type of organic solvent employed in the fabrication process of the powder.  相似文献   

5.
The crystal structure of a low-temperature modification of the Li12Zn4(P2O7)5 compound has been determined by full-profile analysis from the X-ray powder diffraction data. The compound crystallizes in the monoclinic crystal system (a = 5.130(1) Å, b = 13.454(1) Å, c = 8.205(1) Å, β = 90.36(1)°, space group P21/n, Z = 4) and has a framework structure in which the zinc and lithium atoms statistically occupy equivalent positions.  相似文献   

6.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

7.
Positive electrode material LiNi1/2Mn1/2O2 was synthesized via the carbonate co-precipitation method and the hydroxide precipitation route to study the effects of the precursor on its structural and electrochemical properties. The results of X-ray diffraction and Rietveld refinement show that the carbonate precursor of Ni2+ and Mn2+ exhibits one phase at a pH of 8.5, while the hydroxide deposit separates into Ni(OH)2 and Mn(OH)2 phases under the same experimental conditions. LiNi1/2Mn1/2O2 material prepared from the hydroxide precursor shows 8.9% Li/Ni exchange and a large capacity loss of 11.3% in the first 10 cycles. By contrast, more uniform distribution of transition metal ions and stable Mn2+ in the carbonate precursor contribute to only 7.8% Li/Ni disorder in the obtained LiNi1/2Mn1/2O2, which delivers a reversible capacity of about 182 mAh g−1 at a current rate of 14 mA g−1 between 2.5 and 4.8 V.  相似文献   

8.
Co3O4 nanorods have been successfully synthesized by thermal decomposition of the precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the first time. The obtained Co3O4 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The results demonstrate that the as-synthesized nanorods are single crystalline with an average diameter of about 20 to 50 nm and length up to several micrometers. Preliminary electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements, are carried out in 6 M KOH electrolyte. Specific capacitance of 456 F g−1 for a single electrode could be achieved even after 500 cycles, suggesting its potential application in electrochemical capacitors. This promising method could provide a universal green chemistry approach to synthesize other low-cost and environmentally friendly transition metal hydroxide or oxide.  相似文献   

9.
A modified ball-milling-assisted green solid reaction method is provided to prepare Li4Ti5O12/C composite materials with controllable carbon content. Thermal analysis was utilized to investigate the reaction process and the temperature for eliminating carbon. The added carbon and the time for eliminating the carbon can affect the particle size and greatly improve the cycling stability and rate performance. Besides, the particle size can reach ~60 nm, the Li4Ti5O12 eliminated carbon at 600 °C has ~178% higher discharge capacity than that without added carbon after 500 cycles under the same conditions. As for the Li4Ti5O12 with a carbon weight of 10.6%, the second discharge capacity can reach 177.2 and 120.8 mAh g−1 at 1 and 20 C rates, respectively. Its discharge capacity still remains at 118.3 mAh g−1 after 500 cycles under various current rates. The results are comparable to those of the reported Li4Ti5O12/PAS composite.  相似文献   

10.
11.
12.
The nanostructured solid solution Mn0.5Ce0.5O2 is synthesized to develop effective noble metal free catalysts for the detoxification of technogenic contaminants. Its chemical and phase compositions and textural characteristics are studied by differential thermal analysis, X-ray diffraction analysis, laser mass spectrometry, and low-temperature nitrogen adsorption. The activity of the solid solution in the oxidation of carbon monoxide is determined by the flow method within a temperature range of 20–300°C at atmospheric pressure, a gas hourly space velocity of 1800 h−1 for the following gas mixture composition, vol %: CO, 3.6; O2, 8.0; N2, balance. The activity of Mn0.5Ce0.5O2 is shown to be appreciably higher than the activity of MnOx and CeO2, and the temperature of 100% conversion is 92, 120, and 210°C, respectively. Using the solid solution as a support and the technique of impregnation, we synthesize the nanostructured catalysts Cu/Mn0.5Ce0.5O2 and Ag/Mn0.5Ce0.5O2, which manifest high activity in the oxidation of carbon monoxide: the temperature of 100% conversion is 77 and 85°C, respectively. The new catalysts could be of interest for the purification of industrial and motor vehicle wastes.  相似文献   

13.
Core-shell nanostructures of Mn2O3@SiO2, Mn2O3@amino-functionalized silica, Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica were synthesized using the hydrolysis of the respective organosilane precursor over Mn2O3 nanoparticles dispersed using colloidal solutions of Tergitol and cyclohexane. The synthetic methodology used is an improvement over the commonly used post-grafting or co-condensation method as it ensures a high density of functional groups over the core-shell nanostructures. The high density of functional groups can be useful in immobilization of biomolecules and drugs and thus can be used in targeted drug delivery. The high density of functional groups can be used for extraction of elements present in trace amounts. These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies. The zeta potential study shows that the hydrolysis of organosilane to form the shell results in more number of functional groups on it as compared to the shell formed using post-grafting method. The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L -methionine and were characterized by zeta potential studies.  相似文献   

14.
15.
16.
A lithium insertion material having the composition LiNi0.3Co0.3Mn0.3Fe0.1O2 was synthesized by simple sol-gel method. The structural and electrochemical properties of the sample were investigated using X-ray diffraction spectroscopy (XRD) and the galvanostatic charge-discharge method. Rietvelt analysis of the XRD patterns shows that this compound can be classified as α-NaFeO2 structure type (R3m; a=2.8689(5) Å and 14.296(5) Å in hexagonal setting). Rietvelt fitting shows that a relatively large amount of Fe and Ni ion occupy the Li layer (3a site) and a relatively large amount of Li occupies the transition metal layer (3b site). LiNi0.3Co0.3Mn0.3Fe0.1O2 when cycled in the voltage range 4.3–2.8 V gives an initial discharge capacity of 120 mAh/g, and stable cycling performance. LiNi0.3Co0.3Mn0.3Fe0.1O2 in the voltage range 2.8–4.5 V has a discharge capacity of 140 mAh/g, and exhibits a significant loss in capacity during cycling. Ex-situ XRD measurements were performed to study the structure changes of the samples after cycling between 2.8–4.3 V and 2.8–4.5 V for 20 cycles. The XRD and electrochemical results suggested that cation mixing in this layered structure oxide could be causing degradation of the cell capacity.  相似文献   

17.
The highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls can be synthesized by hard template with using mesoporous silica SBA-15 as hard template and using ferric nitrate, cobalt nitrate, and copper nitrate as metal precursors. These new mesoporous materials above have high surface areas, narrow pore size distribution, and large pore volumes, which are believed to be valuable for the potential application in the field of sensors, catalysis, message recording, magnetics, and biology. This work provides a method to fabricate the highly ordered mesoporous materials composed of multi-metal oxides with crystalline walls. The development of such versatile approach is of great significance in practical application. It can be envisaged that this established method is significantly expandable to the controlled synthesis of the mesoporous functional materials with diverse compositions.  相似文献   

18.
At least four compounds, viz. LiAlO2, LiAl5O8, Li5AlO4 and Li2Al4O7, are known in the Li2O-Al2O3 system. These compounds are important for several technological applications. Combustion synthesis of these compounds using urea as a fuel was attempted. LiAlO2 and LiAl5O8 could be successfully prepared by choosing the starting materials in required stoichiometric ratios. Li2Al4O7 was not obtained as a pure phase; γ-LiAlO2 was formed as an impurity phase. Li5AlO4 could not be prepared by combustion process. Some phosphors based on these aluminates could also be prepared. Activation of these aluminates with Fe3+, Mn4+, Cu+, etc. was successfully achieved. Excitation and emission spectra for LiAl5O8: Fe3+, LiAl5O8: Mn2+, and Li2Al4O7: Cu+ are reported.  相似文献   

19.
Structure and crystalline behavior of the ternary system ZnO-B2O3-P2O5 glasses were investigated by means of X-ray diffraction (XRD) and infrared Raman spectra. The research showed that number of the planar [BO3] units increases with the increase of B2O3 content. When the B2O3 content is above ≥10 mol %, the relative content of planar [BO3] units increases rapidly and causes weakening of the glass structure and decrease in the chemical stability. In the crystallized glasses the predominant crystal phase Zn2P2O7 decreases with the increase of B2O3 content, while the crystal phase BPO4 increases with it, which cause the declining of chemical stability and the decrease of thermal coefficients of expansion.  相似文献   

20.
The phase formation is investigated and the phase diagram of the Ho2O3-SrAl2O4 system is constructed. A ternary compound, namely, Ho2SrAl2O7, is revealed. It is established that this compound undergoes incongruent melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号