首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A test bench was developed and the conversion of the organic matter of coal (OMC) in supercritical water (SCW) was studied under conditions of a continuous supply of a water-coal suspension to a vertical flow reactor at 390–760°C and a pressure of 30 MPa. From 44 to 63% OMC was released as liquid and gaseous products from coal particles (from the water-coal supension) during the time of fall to the reactor. This stage was referred to as the dynamic conversion of coal. The particles passed through the stage of the dynamic conversion of coal did not agglomerate in the reactor in the subsequent process of batch conversion in a coal layer at T = 550–760°C. The volatile products of the overall process of the dynamic and batch conversion of coal included saturated hydrocarbons (CH4 and C2H6), aromatic hydrocarbons (C6H6, C7H8, and C8H10), synthesis gas (H2 and CO), and CO2. At T < 600°C, CO2 and CO were the degradation products of oxygen-containing OMC fragments, whereas they also resulted from the decomposition of water molecules at higher temperatures in accordance with the reaction (C) + H2O = CO + H2. The mechanisms were considered, and the parameters responsible for the dynamic conversion of coal were calculated.  相似文献   

2.
The solubility of: naphthalene, fluorene, phenanthrene, pyrene, and chrysene in supercritical CO2 at two temperatures and pressures up to 200 atm were calculated from fugacities derived via the Peng-Robinson equation of state. The calculated solubilities were correlated with the results of experiments in which polycyclic aromatic hydrocarbons (PAH) in fuel mixtures were extracted with supercritical CO2 and analysed by supercritical fluid chromatography and by gas chromatography.  相似文献   

3.
C.J. Liu  G.X. Wang  S.X. Sang 《Fuel》2010,89(10):2665-2672
Pore structure changing of coal during the CO2 geo-sequestration is one of the key issues that affect the sequestration process significantly. To address this problem, the CO2 sequestration process in an anthracite coal was replicated using a supercritical CO2 (ScCO2) reactor. Different coal grain sizes were exposed to ScCO2 and water at around 40 °C and 9.8 MPa for 72 h. Helium pycnometer and mercury porosimetry provide the density, pore size distribution and porosity of the coal before and after the ScCO2 treatment. The results show that after exposure to the ScCO2-H2O reaction, part of the carbonate minerals were dissolved and flushed away by water which made the true density increased as well as total pore volume and porosity most importantly in the micro-pore range. Hysteresis between mercury intrusion and extrusion was observed. Ink bottle shaped pores can be either damaged or created compared with the ScCO2 treated coal samples. This suggests that the ScCO2 treatment most likely increase the volumes of pores in anthracite coal, which also contributed to the increase in porosity of the treated samples. Therefore the CO2 sequestration into coal appears to have the potential to increase significantly the anthracite microporosity which is very advantageous for CO2 storage.  相似文献   

4.
In this paper the essential oil supercritical carbon dioxide extraction from leaves of Lamiaceae family species was studied. Recent investigations of Lamiaceae family essential oil storage have shown that most of the oil is found in peltate glandular trichomes on the leaf surface. The effect of supercritical CO2 on the peltate glands was investigated by Scanning Electron Microscopy. It was observed that exposure to supercritical CO2 led to disruption of the peltate glands and essential oil release. This phenomenon was used as a basic hypothesis of the mathematical model of the supercritical fluid extraction with CO2. The model was applied to simulate basil, rosemary, marjoram and pennyroyal supercritical CO2 extraction on the existing experimental data. An average deviation from the experimental data was less than 0.83%. The model results indicated a possibility of a decrease in the supercritical CO2 consumption by modified and optimized processing of Lamiaceae family herbaceous material.  相似文献   

5.
This study examines the foaming behaviour of polystyrene (PS) blown with supercritical CO2–N2 blends. This is achieved by observing their foaming processes in situ using a visualization system within a high-temperature/high-pressure view-cell. Through analyzing the cell nucleation and growth processes, the foaming mechanisms of PS blown with supercritical CO2–N2 blends have been studied. It was observed that the 75% CO2–25% N2 blend yielded the highest cell densities over a wide processing temperature window, which indicates the high nucleating power of supercritical N2 and the high foam expanding ability of supercritical CO2 would produce synergistic effects with that ratio in batch foaming. Also, the presence of supercritical CO2 increased the solubility of supercritical N2 in PS, so the concentration of dissolved supercritical N2 was higher than the prediction by the simple mixing rule. The additional supercritical N2 further increased the cell nucleation performance. These results provide valuable directions to identify the optimal supercritical CO2–N2 composition for the foaming of PS to replace the hazardous blowing agents which are commonly used despite their high flammability or ozone depleting characteristics.  相似文献   

6.
To remove high concentrations of CO2 from the off‐gas of coal‐driven power plants, a new process was proposed. The catalytic hydrogenation of the CO2 leads to the production of C2 – C4 (petrochemical feedstock) and liquid C5+ hydrocarbons (fuel). Thus, environmentally harmful CO2 may be converted sustainably to useful products. On the basis of a process flow sheet, the costs for processing the CO2 are estimated for different plant sizes. The price of hydrogen contributes significantly to the overall production costs. Further price reductions may be achieved by final engineering optimization of the process as a whole and specific unit operations.  相似文献   

7.
Effects of temperature (at 35, 45 or 55°C) and pressure (10–110 atm) on the relative distribution coefficients of the twelve key components of spearmint oil (essential oil ofMentha cardiaca; Scotch spearmint) at equilibrium in dense CO2 were investigated under conditions ranging from subcritical to supercritical regions. Effects of vapor pressure, molecular weight and polarity of the key components on their equilibrium distributions in sub/supercritical CO2 are discussed. At 35°C, all key components of spearmint oil are equally soluble in dense CO2 within the 12–102 atm pressure region. At 45 and 55°C, the key components are equally soluble for pressures greater than about 60 atm. However, around either 45°C/27 atm or 55°C/35 atm conditions, the relative distribution coefficients of all monoterpene hydrocarbons and of isomenthone (an oxygenated monoterpene) exhibit maxima, which are due to significantly higher vapor pressures of these components and significantly lower solvating power of the dense-gas solvent at these particular temperatures and pressures. Vapor-pressure effects, coupled with the decrease in solvating power, dominate the effects of polarity and molecular mass of the key components. Deterpenation of spearmint oil with dense CO2 is possible around either 45°C/27 atm or 55°C/35 atm, where the monoterpene hydrocarbons tend to concentrate in the CO2-rich phase.  相似文献   

8.
M.J. Jenkins  Y. Cao  G.A. Leeke 《Polymer》2007,48(21):6304-6310
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(?-caprolactone) (PCL) have been produced by melt blending in the presence of supercritical CO2. Infrared spectroscopy has shown that supercritical CO2 can induce melting in PHBV at temperatures below the melting point. The miscibility of the PCL-PHBV blend system produced by both mechanical and supercritical means has been characterised by a combination of differential scanning calorimetry and dynamic mechanical thermal analysis. It has been shown that PHBV-PCL blends produced using mechanical means were immiscible, whereas the same blends produced using supercritical methods were found to be miscible as evidenced by a decrease in the glass transition temperature of the PHBV component. The development of miscibility is discussed in terms of enhanced interdiffusion resulting from the action of supercritical CO2. In addition, the infrared spectrum of the blends produced using supercritical CO2 showed negligible levels of the degradation product crotonic acid. Whereas in the samples produced using mechanical blending without supercritical CO2, there was a significant increase in the level of crotonic acid, which was interpreted as evidence of degradation.  相似文献   

9.
Experimental cloud-point data of binary and ternary mixtures for poly(isodecyl methacrylate) [P(IDMA)] in supercritical carbon dioxide, dimethyl ether (DME), propane, propylene, butane and 1-butene have been studied experimentally using a high pressure variable volume view cell. These systems show the phase behavior at temperature of 308 K to 473 K and pressure up to 255 MPa. The cloud-point curves for the P(IDMA)+CO2+isodecyl methacrylate (IDMA) are measured in changes of the pressure-temperature (P-T) slope, and with cosolvent concentrations of 0-60.1 wt%. Also, experimental data of phase behaviors for IDMA in supercritical carbon dioxide is obtained at temperature range of 313.2–393.2 K and pressure range of 5.8–22.03 MPa. The experimental results were modeled with the Peng-Robinson equation of state. The location of the P(IDMA)+CO2 cloud-point curve shifts to lower temperatures and pressures when DME is added to P(IDMA)+CO2 solution. The P(IDMA)+C4 hydrocarbons cloud-point curves are ca. 16.0 MPa lower pressures than the P(IDMA)+C3 hydrocarbons curves at constant temperature. This article is dedicated to Professor Chul Soo Lee in commemoration of his retirement from Department of Chemical and Biological Engineering of Korea University.  相似文献   

10.
Gas evolution kinetics of two coal samples during rapid pyrolysis   总被引:1,自引:0,他引:1  
Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 °C s− 1 and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H2, CO, CO2, and light hydrocarbons CH4, C2H2, C2H4, C2H6, C3H6, C3H8, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 °C. The low rank coal generated more CO and CO2 than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO2, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure.  相似文献   

11.
Nowadays, the syngas which is obtained from the reforming of coal, biomass or natural gas contain significantly amounts of CO2 that cannot be separated and consequently, it can take part into the Fischer–Tropsch (FTS) catalytic activity. Therefore, the presence of CO2 in the syngas flow should be taken into account. In the present study, the FTS CO hydrogenation process was compared to that of CO2 on a carbon nanofibers supported Co catalyst. The influence of CO2 content in the feed stream (H2/CO/CO2 ratio) on the reaction performance in terms of conversion and selectivity to the different products was described. Both the support and the prepared catalyst were characterized by nitrogen adsorption–desorption, temperature-programmed reduction (TPR) and X-ray diffraction (XRD). Results showed that CO hydrogenation was controlled by a Fischer–Tropsch regime, whereas CO2 hydrogenation was controlled by a methanation process. When feed was composed of CO and CO2 mixtures, the catalytic activity decreased with respect to that obtained with a CO2-free feed stream. Moreover, the presence of CO2 in feed stream favored the formation of lighter hydrocarbons and could block the production of further CO2 via Water-Gas-Shift (WGS) reaction.  相似文献   

12.
The effects of supercritical carbon dioxide (CO2) on waste banana peels for copper adsorption were evaluated. Supercritical CO2 was employed both in a solvent extraction for antioxidant compound recovery and in an emerging biomass treatment to increase the subsequent heavy metal-removal step; the latter is termed “explosion with supercritical CO2”. This lignocellulosic biomass was analyzed before and after being subjected to both processes by scanning electron microscopy and X-ray patterning. Thermal gravimetric and differential scanning calorimetry analyses were performed to understand the different effects of supercritical carbon dioxide employed in these two processes on banana peels. The explosion with supercritical CO2 process resulted in a more pronounced effect on the vegetable structure. Nevertheless, no increase in the copper-removal capacity was achieved. The adsorption studies showed similar behaviors for fresh and extracted samples, demonstrating that banana peels previously extracted with supercritical CO2 retained their adsorption capacity for subsequent heavy metal removal.  相似文献   

13.
Modeling the adsorption of pure gases on coals with the SLD model   总被引:1,自引:0,他引:1  
J.E. Fitzgerald 《Carbon》2003,41(12):2203-2216
The simplified local density/Peng-Robinson model (SLD-PR) was modified to improve its predictive capability when dealing with near-critical and supercritical adsorption systems of the type encountered in coalbed methane recovery and CO2 sequestration. The goal was to develop efficient equation-of-state (EOS) computational frameworks for representing adsorption behavior, as well as to improve our understanding of the phenomenon. The ability of the modified SLD-PR to correlate accurately data for supercritical adsorption systems is demonstrated using adsorption measurements on activated carbon, Illinois #6 coal, Fruitland coal, and Lower Basin Fruitland coal. The results indicate that the modified SLD-PR model, which incorporates a modified repulsive parameter “b” for the PR EOS, is capable of modeling the adsorption of pure methane, nitrogen, and CO2 at coalbed conditions. Inclusion of a slit geometry in the adsorbent matrix yields results superior to our previous two-dimensional EOS models for the adsorbates considered. The results also indicate that accounting for the adsorption surface structure within the SLD-EOS framework is effective in improving modeling capability for high-pressure adsorption phenomena. An explanation is offered as to why the adsorbed-phase densities are close to the EOS reciprocal co-volumes. Further, the model (a) generates direct estimates for the adsorbed-phase densities (which facilitate reliable prediction of absolute gas adsorption) and (b) readily describes the observed maximum in Gibbs-adsorption isotherms of CO2 at the temperatures and pressures encountered in coalbeds.  相似文献   

14.
Using a manometric experimental setup, high-pressure sorption measurements with CH4 and CO2 were performed on three Chinese coal samples of different rank (VRr = 0.53%, 1.20%, and 3.86%). The experiments were conducted at 35, 45, and 55 °C with pressures up to 25 MPa on the 0.354-1 mm particle fraction in the dry state. The objective of this study was to explore the accuracy and reproducibility of the manometric method in the pressure and temperature range relevant for potential coalbed methane (CBM) and CO2-enhanced CBM (CO2-ECBM) activities (P > 8 MPa, T > 35 °C). Maximum experimental errors were estimated using the Gauss error propagation theorem, and reproducibility tests of the high-pressure sorption measurements for CH4 and CO2 were performed. Further, the experimental data presented here was used to explicitly study the CO2 sorption behaviour of Chinese coal samples in the elevated pressure range (up to 25 MPa) and the effects of temperature on supercritical CO2 sorption isotherms.The experiments provided characteristic excess sorption isotherms which, in the case of CO2 exhibit a maximum around the critical pressure and then decline and level out towards a constant value. The results of these manometric tests are consistent with those of previous gravimetric sorption studies and corroborate a crossover of the 35, 45, and 55 °C CO2 excess sorption isotherms in the high-pressure range. The measurement range could be extended, however, to significantly higher pressures. The excess sorption isotherms tend to converge, indicating that the temperature dependence of CO2 excess sorption on coals at high-pressures (>20 MPa) becomes marginal. Further, all CO2 high-pressure isotherms measured in this study were approximated by a three-parameter excess sorption function with special consideration of the density ratio of the “free” phase and the sorbed phase. This function provided a good representation of the experimental data.The maximum excess sorption capacity of the three coal samples for methane ranged from 0.8 to 1.6 mmol/g (dry, ash-free) and increased from medium volatile bituminous to subbituminous to anthracite. The medium volatile bituminous coal also exhibited the lowest overall excess sorption capacity for CO2. However, the subbituminous coal was found to have the highest CO2 sorption capacity of the three samples. The mass fraction of adsorbed substance as a function of time recorded during the first pressure step was used to analyze the kinetics of CH4 and CO2 sorption on the coal samples. CO2 sorption proceeds more rapidly than CH4 sorption on the anthracite and the medium volatile bituminous coal. For the subbituminous coal, methane sorption is initially faster, but during the final stage of the measurement CO2 sorption approaches the equilibrium value more rapidly than methane.  相似文献   

15.
BACKGROUND: Chlorella vulgaris is a green microalgae that contains various pigment components of carotenoids and chlorophylls. Supercritical CO2 is widely used for extraction of pharmaceutical compounds because it is non‐oxic and easily separated from extracted material by simply depressurizing. In this work, pharmaceutical compounds from Chlorella vulgaris have been extracted using supercritical CO2 with or without entrainer at various extraction conditions. RESULTS: Based on high performance liquid chromatography (HPLC) analysis, the extracts contained pigment components, such as lutein, β‐carotene, chlorophyll a and b. Higher extraction pressure and temperature promoted higher lutein extraction by supercritical CO2. The optimum pressure and temperature for extraction were obtained as 50 MPa and 80 °C. Ethanol as an entrainer was more effective than acetone for the extraction of pigment components. Pigment components in the extract obtained by supercritical CO2 with and without entrainer were compared with the extract obtained by a conventional extraction method. CONCLUSION: Supercritical CO2 has been successfully applied for the extraction of pigment components from Chlorella vulgaris. Supercritical CO2 enabled high selectivity for lutein extraction; however, the lutein yield was lower than that obtained by extraction using supercritical CO2 with ethanol and soxhlet. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Carbon-13 chemical-shift imaging (CSI) was used to study the distribution of CO2 in green pine sapwood that was partially dewatered by a process in which CO2 was cycled between the supercritical fluid and gas phases. Proton magnetic resonance imaging (MRI) was used to characterise the corresponding distribution of water. The CSI experiment showed strongest signals from cells with weakest proton MRI signals. This was consistent with a mechanism in which latewood bands provide pathways for supercritical CO2 to penetrate into the interior of a specimen. Supercritical CO2 also penetrated earlywood exposed on surfaces of the specimen.  相似文献   

17.
The Fischer‐Tropsch synthesis (FTS) in gaseous and supercritical phases was examined in a continuous, high‐pressure fixed‐bed reactor by employing a cobalt catalyst (Co‐Ru/γ‐Al2O3). The kinetic modeling of the FTS was investigated in the reactor over a 60–80 mesh cobalt catalyst. The Langmuir‐Hinshelwood kinetic equation was used for both the Fisher‐Tropsch (FT) and water gas shift (WGS) reactions. The kinetic model was applied for simulation of the reactor with 16–20 mesh cobalt catalyst. The simulation results showed a good agreement with the experimental data. The experimental data showed that higher CO conversion and lower CH4 and CO2 selectivities were achieved in supercritical media compared to the gaseous phase. The BET surface area and pore volume enhancement results provided evidence of the higher in situ extraction and greater solubility of heavy hydrocarbons in supercritical media than in gaseous phases. Furthermore, the effects of supercritical solvent such as n‐pentane, n‐hexane, n‐heptane and their mixtures were studied. Moreover, the influence of reaction temperature, H2/CO ratio, W/F(CO+H2) and pressure tuning in the supercritical media FT synthesis were investigated, as well as the effect of the supercritical fluid on the heat transfer within the reactor. The product carbon distribution had a similar shape for all types of solvents and shifted to lighter molar mass compounds with increasing temperature, H2/CO ratio, and W/F(CO+H2). Finally, the product distribution shifted to higher molar mass hydrocarbons with increasing pressure. As a result, one may conclude that a mixture of hydrocarbon products of the FTS can be used as a solvent for supercritical media in Fischer‐Tropsch synthesis.  相似文献   

18.
Experimental results concerning the processing feasibility of using supercritical CO2 were reported for the extraction of epicuticular wax fromEphedra herb. Subsequently the isolability of nonacosan-10-ol from the total extract of epicuticular wax was evaluated by TLC and gas chromatography. Also, Soxhlet extractions ofEphedra herb by n-hexane and chloroform were performed and these results were compared with those obtained by supercritical CO2 extraction. As a result, we could demonstrate that supercritical CO2 can be an economical alternative to the organic solvents in processing the medicinal plant.  相似文献   

19.
The use of H2SO4 in boric acid production from colemanite mineral has several problems, related to product impurities, corrosion and environmental discharge limits. To overcome these problems and to increase extraction efficiency of boric acid, heterogeneous reaction between colemanite and CO2 dissolved in H2O was studied at and above supercritical CO2 conditions. Supercritical conditions enhanced the extraction efficiency of boric acid from colemanite mineral, with 96.9% boric acid extraction efficiency being obtained from CO2–colemanite reaction at 60 °C, for 2 h of reaction time for particles in the range of +20–40 μm. A powder crystallized from filtrate of reaction was determined as H3BO3 and the solid formed at the end of reaction was characterized mostly as CaCO3 according to FTIR, XRD, TGA and SEM analyses. The use of supercritical CO2 as a leaching agent in colemanite does not only produce boric acid but also helps to reduce the amount of CO2 in the atmosphere. Based on these facts, supercritical CO2 as extractant makes this process green and sustainable for recovering boric acid from boron minerals.  相似文献   

20.
BaTiO3 powders from sol-gel derived gels were prepared using two different drying methods. In addition to the conventional drying of gels in air at 90°C the supercritical CO2 drying method was also used. Results showed that the properties of BaTiO3 powder produced by supercritical drying with CO2 are better. The grain surface is less contaminated as a result of the supercritical drying and the microstructure development during sintering leads to a homogeneous fine-grained microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号