首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional overlap in mismatch repair by human MSH3 and MSH6   总被引:1,自引:0,他引:1  
Three human genes, hMSH2, hMSH3, and hMSH6, are homologues of the bacterial MutS gene whose products bind DNA mismatches to initiate strand-specific repair of DNA replication errors. Several studies suggest that a complex of hMSH2 x hMSH6 (hMutSalpha) functions primarily in repair of base x base mismatches or single extra bases, whereas a hMSH2 x hMSH3 complex (hMutSbeta) functions chiefly in repair of heteroduplexes containing two to four extra bases. In the present study, we compare results with a tumor cell line (HHUA) that is mutant in both hMSH3 and hMSH6 to results with derivative clones containing either wild-type hMSH3 or wild-type hMSH6, introduced by microcell-mediated transfer of chromosome 5 or 2, respectively. HHUA cells exhibit marked instability at 12 different microsatellite loci composed of repeat units of 1 to 4 base pairs. Compared to normal cells, HHUA cells have mutation rates at the HPRT locus that are elevated 500-fold for base substitutions and 2400-fold for single-base frameshifts. Extracts of HHUA cells are defective in strand-specific repair of substrates containing base x base mismatches or 1-4 extra bases. Transfer of either chromosome 5 (hMSH3) or 2 (hMSH6) into HHUA cells partially corrects instability at the microsatellite loci and also the substitution and frameshift mutator phenotypes at the HPRT locus. Extracts of these lines can repair some, but not all, heteroduplexes. The combined mutation rate and mismatch repair specificity data suggest that both hMSH3 and hMSH6 can independently participate in repair of replication errors containing base x base mismatches or 1-4 extra bases. Thus, these two gene products share redundant roles in controlling mutation rates in human cells.  相似文献   

2.
Female wild Japanese monkeys (Macaca fuscata), as with all male cercopithecoids, use the mesiobuccal surfaces or the elongated crests of the mandibular third premolars (P3s), as cutting blocks that wear against edges of maxillary canines during threat manifestation or food-eating. In other words, the crests of their P3s are honed with the maxillary canines. The crests become sloped during growth and more heavily striated with the advance of age. The number, directions, lengths, and widths of these striations have been analyzed quantitatively using scanning electron microscopy (SEM). Two samples showed two distinct types of parallel striations, one longer and thicker (171.5 microns long and 14.5 microns wide on average) than the other (114.8 microns long and 12.0 microns wide on average). These striations were caused by contact between the sharp edge of the upper canine and the P3 during honing (canine/premolar complex). The long and thick striations are asymmetrical with widened parts or pits on one end, and were easily distinguished from other thinner striations which may have been caused by fine particles. The third sample showed Hunter-Schreger bands with striae of Retzius on the sloping heavily worn mesiobuccal surface. The features of these thick parallel striations indicate that they result from closing movements of the jaw.  相似文献   

3.
The human DNA mismatch repair genes hMSH2 and hMSH6 encode the proteins that, together, bind to mismatches to initiate repair of replication errors. Human tumor cells containing mutations in these genes have strongly elevated mutation rates in selectable genes and at microsatellite loci, although mutations in these genes cause somewhat different mutator phenotypes. These cells are also resistant to killing by certain drugs and are defective in mismatch repair. Because the elevated mutation rates in these cells may lead to mutations in additional genes that are causally related to the other defects, here we attempt to establish a cause-effect relationship between the hMSH2 and hMSH6 gene mutations and the observed phenotypes. The endometrial tumor cell line HEC59 contains mutations in both alleles of hMSH2. The colon tumor cell line HCT15 contains mutations in hMSH6 and also has a sequence change in a conserved region of the coding sequence for DNA polymerase delta, a replicative DNA polymerase. We introduced human chromosome 2 containing the wild-type hMSH2 and hMSH6 genes into HEC59 and HCT15 cells. Introduction of chromosome 2 to HEC59 cells restored microsatellite stability, sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment, and mismatch repair activity. Transfer of chromosome 2 to HCT15 cells also reduced the mutation rate at the HPRT locus and restored sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment and mismatch repair activity. The results demonstrate that the observed defects are causally related to mutations in genes on chromosome 2, probably hMSH2 or hMSH6, but are not related to sequence changes in other genes, including the gene encoding DNA polymerase delta.  相似文献   

4.
Mutants with enhanced spontaneous mutability (hsm) to canavanine resistance were induced by N-methyl-N-nitrosourea in Saccharomyces cerevisiae. One bearing the hsm3-1 mutation was used for this study. This mutation does not increase sensitivity to the lethal action of different mutagens. The hsm3-1 mutation produces a mutator phenotype, enhancing the rates of spontaneous mutation to canavanine resistance and reversions of lys1-1 and his1-7. This mutation increases the rate of intragenic mitotic recombination at the ADE2 gene. The ability of the hsm3 mutant to correct DNA heteroduplex is reduced in comparison with the wild-type strain. All these phenotypes are similar to ones caused by pms1, mlhl and msh2 mutations. In contrast to these mutations, hsm3-1 increases the frequency of ade mutations induced by 6-HAP and UV light. Epistasis analysis of double mutants shows that the PMS1 and HSM3 genes control different mismatch repair systems. The HSM3 gene maps to the right arm of chromosome II, 25 cM distal to the HIS7 gene. Strains that bear a deleted open reading frame YBR272c have the genetic properties of the hsm3 mutant. The HSM3 product shows weak similarity to predicted products of the yeast MSH genes (homologs of the Escherichia coli mutS gene). The HSM3 gene may be a member of the yeast MutS homolog family, but its function in DNA metabolism differs from the functions of other yeast MutS homologs.  相似文献   

5.
Many human tumours have length alterations in repetitive sequence elements. Although this microsatellite instability has been attributed to mutations in four DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) kindreds, many sporadic tumours exhibit instability but no detectable mutations in these genes. It is therefore of interest to identify other genes that contribute to this instability. In yeast, mutations in several genes, including RTH and MSH3, cause microsatellite instability. Thus, we screened 16 endometrial carcinomas with microsatellite instability for alterations in FEN1 (the human homolog of RTH) and in MSH3 (refs 12-14). Although we found no FEN1 mutations, a frameshift mutation in MSH3 was observed in an endometrial carcinoma and in an endometrial carcinoma cell line. Extracts of the cell line were deficient in repair of DNA substrates containing mismatches or extra nucleotides. Introducing chromosome 5, encoding the MSH3 gene, into the mutant cell line increased the stability of some but not all microsatellites. Extracts of these cells repaired certain substrates containing extra nucleotides, but were deficient in repair of those containing mismatches or other extra nucleotides. A subsequent search revealed a second gene mutation in HHUA cells, a missense mutation in the MSH6 gene. Together the data suggest that the MSH3 gene encodes a product that functions in repair of some but not all pre-mutational intermediates, its mutation in tumours can result in genomic instability and, as in yeast, MSH3 and MSH6 are partially redundant for mismatch repair.  相似文献   

6.
PURPOSE: To determine the impact of high-dose cytarabine (ARA-C) (HDAC) dose modification, based on renal function, on the incidence of neurotoxicity (NT). PATIENTS AND METHODS: We retrospectively analyzed the records of 256 patients treated with HDAC (> or = 2.0 g/m2 per dose) for acute myelogenous leukemia (AML) at the University of California, San Francisco (UCSF). From 1985 to 1994, a total of 358 cycles of HDAC were administered, using either a twice-daily schedule (n = 208) or a once-daily regimen (n = 48). In 1989, a dose-modification algorithm was initiated at our institution, which reduced ARA-C doses in the setting of renal insufficiency (RI). For patients with a serum creatinine (Cr) level of 1.5 to 1.9 mg/dL during treatment, or an increase in Cr during treatment (deltaCr) of 0.5 to 1.2 mg/dL, ARA-C was decreased to 1 g/m2 per dose. For patients with a Cr > or = 2.0 mg/dL or a deltaCr greater 1.2 mg/dL, the dose was reduced to 0.1 g/m2/d. RESULTS: Overall, the incidence of NT was 16% (34 of 208) for patients treated with twice-daily HDAC and 0% (none of 48) for patients treated with daily HDAC (P = .003). NT occurred more often in patients treated on a twice-daily schedule with 3 g/m2 per dose compared with 2 g/m2 per dose (25% v 8%; P = .009). NT occurred in 55% of the twice-daily-treated patients with RI, compared with 7% of those with normal renal function (P = .00001). In patients with RI, NT occurred in none of 11 dose-modified cycles versus five of 11 (45%) total unmodified cycles (P = .01). None of 14 patients treated with once-daily HDAC given during RI developed NT, compared to 55% of patients (23 of 42) receiving twice-daily HDAC during RI (P = .009). By univariate analysis, NT was not associated with patient age or serum alkaline phosphatase, but NT was significantly increased in patients treated with twice-daily HDAC when the serum bilirubin was > or = 2.0 mg/dL compared with twice-daily HDAC given when the total bilirubin was less than 2.0 mg/dL (33% v 14%; P = .017). Multivariate analysis confirmed that RI was the most significant risk factor associated with the development of NT. CONCLUSION: HDAC NT is strongly associated with RI. The risk of HDAC NT can be reduced by the following: (1) routinely reducing the ARA-C dose from 3 to 2 g/m2 per dose; (2) modifying the ARA-C dose based on daily Cr values; and (3) administering HDAC on a once-daily rather than twice-daily schedule.  相似文献   

7.
A human MSH2-human MSH3 (hMSH2.hMSH3) complex of approximately 1:1 stoichiometry (human MutSbeta (hMutSbeta)) has been demonstrated in several human tumor cell lines and purified to near homogeneity. In vitro, hMutSbeta supports the efficient repair of insertion/deletion (I/D) heterologies of 2-8 nucleotides, is weakly active on a single-nucleotide I/D mispair, and is not detectably active on the eight base-base mismatches. Human MutSalpha (hMutSalpha), a heterodimer of hMSH2 and hMSH6, efficiently supports the repair of single-nucleotide I/D mismatches, base-base mispairs, and all substrates tested that were repaired by hMutSbeta. Thus, the repair specificities of hMutSalpha and hMutSbeta are redundant with respect to the repair of I/D heterologies of 2-8 nucleotides. The hMutSalpha level in repair-proficient HeLa cells (1.5 microg/mg nuclear extract) is approximately 10 times that of hMutSbeta. In HCT-15 colorectal tumor cells, which do not contain hMSH6 and consequently lack hMutSalpha, the hMutSbeta level is elevated severalfold relative to that in HeLa cells and is responsible for the repair of I/D mismatches that has been observed in this cell line. LoVo tumor cells, which are genetically deficient in hMSH2, lack both hMutSalpha and hMutSbeta, and hMSH3 and hMSH6 levels are less than 4% of those found in repair-proficient cells. Coupled with previous findings (J. T. Drummond, J. Genschel, E. Wolf, and P. Modrich (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 10144-10149), these results suggest that hMSH2 partitions between available pools of hMSH3 and hMSH6 and indicate that hMSH2 positively modulates hMSH6 and hMSH3 levels, perhaps by stabilization of the polypeptides upon heterodimer formation.  相似文献   

8.
Mutagenesis at 3,N4-ethenocytosine (epsilonC), a nonpairing mutagenic lesion, is significantly enhanced in Escherichia coli cells pretreated with UV, alkylating agents, or H2O2. This effect, termed UVM (for UV modulation of mutagenesis), is distinct from known DNA damage-inducible responses, such as the SOS response, the adaptive response to alkylating agents, or the oxyR-mediated response to oxidative agents. Here, we have addressed the hypothesis that UVM results from transient depletion of a mismatch repair activity that normally acts to reduce mutagenesis. To test whether the loss of mismatch repair activities results in the predicted constitutive UVM phenotype, E. coli cells defective for methyl-directed mismatch repair, for very-short-patch repair, or for the N-glycosylase activities MutY and MutM were treated with the UVM-inducing agent 1-methyl-3-nitro-1-nitrosoguanidine, with subsequent transfection of M13 viral single-stranded DNA bearing a site-specific epsilonC lesion. Survival of the M13 DNA was measured as transfection efficiency, and mutation fixation at the lesion was characterized by multiplex sequencing technology. The results showed normal UVM induction patterns in all the repair-defective strains tested. In addition, normal UVM induction was observed in cells overexpressing MutH, MutL, or MutS. All strains displayed UVM reactivation, the term used to describe the increased survival of epsilonC-containing DNA in UVM-induced cells. Taken together, these results indicate that the UVM response is independent of known mismatch repair systems in E. coli and may thus represent a previously unrecognized misrepair or misreplication pathway.  相似文献   

9.
A role for the Mut L homologue-1 (MLH1) protein, a necessary component of DNA mismatch repair (MMR), in G2-M cell cycle checkpoint arrest after 6-thioguanine (6-TG) exposure was suggested previously. A potential role for MLH1 in G1 arrest and/or G1-S transition after damage was, however, not discounted. We report that MLH1-deficient human colon carcinoma (HCT116) cells showed decreased survival and a concomitant deficiency in G2-M cell cycle checkpoint arrest after ionizing radiation (IR) compared with genetically matched, MMR-corrected human colon carcinoma (HCT116 3-6) cells. Similar responses were noted between murine MLH1 knockout compared to wild-type primary embryonic fibroblasts. MMR-deficient HCT116 cells or embryonic fibroblasts from MLH1 knockout mice also demonstrated classic DNA damage tolerance responses after 6-TG exposure. Interestingly, an enhanced p53 protein induction response was observed in HCT116 3-6 (MLH1+) compared with HCT116 (MLH1-) cells after IR or 6-TG. Retroviral vector-mediated expression of the E6 protein did not, however, affect the enhanced G2-M cell cycle arrest observed in HCT116 3-6 compared with MLH1-deficient HCT116 cells. A role for MLH1 in G2-M cell cycle checkpoint control, without alteration in G1, after IR was also suggested by similar S-phase progression between irradiated MLH1-deficient and MLH1-proficient human or murine cells. Introduction of a nocodazole-induced G2-M block, which corrected the MLH1-mediated G2-M arrest deficiency in HCT116 cells, clearly demonstrated that HCT116 and HCT116 3-6 cells did not differ in G1 arrest or G1-S cell cycle transition after IR. Thus, our data indicate that MLH1 does not play a major role in G1 cell cycle transition or arrest. We also show that human MLH1 and MSH2 steady-state protein levels did not vary with damage or cell cycle changes caused by IR or 6-TG. MLH1-mediated G2-M cell cycle delay (caused by either MMR proofreading of DNA lesions or by a direct function of the MLH1 protein in cell cycle arrest) may be important for DNA damage detection and repair prior to chromosome segregation to eliminate carcinogenic lesions (possibly brought on by misrepair) in daughter cells.  相似文献   

10.
Mutations within microsatellite sequences, consisting of additions or deletions of repeat units, are known as the replication/repair error positive (RER+) phenotype or micorsatellite instability (MI). Microsatellite instability has been demonstrated in hereditary and sporadic colorectal carcinomas and is usually observed in noncoding regions of genomic DNA. However, relatively few coding region targets of MI have been identified thus far. Using PCR, we amplified regions encompassing (A)8 and (C)8 microsatellite tracts within hMSH3 and hMSH6 from 31 RER+ sporadic colorectal tumors, 8 hereditary colon cancers, 23 RER+ gastric carcinomas, and 32 RER- gastric tumors. Mutations were found in 11 (36%) of 31 sporadic colon carcinomas, 4 (50%) of 8 hereditary colorectal cancers, and 5 (22%) of 23 RER+ gastric carcinomas, but in only 2 (6%) of 32 RER- gastric carcinomas. These frameshift mutations cause premature stop codons downstream that are predicted to abolish normal protein function. Our results and those of others suggest that DNA mismatch repair genes, such as hMSH3 and hMSH6, are targets for the mutagenic activity of upstream mismatch repair gene mutations and that this enhanced genomic instability may accelerate the accumulation of mutations in RER+ tumors.  相似文献   

11.
At least four genes involved in DNA mismatch repair (MMR), hMSH2, hMLH1, hPMS1 and hPMS2, have been cloned and characterized. These genes have been demonstrated to be altered in the germline of patients with hereditary non-polyposis colorectal cancer (HNPCC). HNPCC is an autosomal dominant disease characterized by a preponderance of proximal colon, young age of onset, increased multiplicity, and improved stage-specific survival. In this study, we examined the expression of hMSH2 protein in sporadic colorectal cancer (CRC). As a result, the frequency of right-sided CRC and multiple CRCs were significantly higher in the patients with hMSH2-negative CRC than in those with hMSH2-positive CRC. The rate of p53 positivity was significantly lower in the hMSH2-negative tumours than that in the hMSH2-positive tumours. The disease-free survival rate tended to be higher in the patients with hMSH2-negative CRC than in the patients with hMSH2-positive CRC. Our findings suggest that both the clinicopathological and biological features of hMSH2-negative sporadic CRC seemed to be similar to those of HNPCC. To clarify the mechanism of carcinogenesis in HNPCC and sporadic CRC, further investigations of genetic alterations caused by MMR genes will be needed.  相似文献   

12.
In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3'-5' exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-gamma), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 10(4)-fold decrease in the 3'-5' exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and the Km for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.  相似文献   

13.
Expression of the DNA mismatch repair (MMR) pathway was examined in the adult and developing rat brain. Rat homologues of human GTBP and MSH2, which are essential components of the post-replicative DNA MMR system, were identified in nuclear extracts from the adult and developing rat brain. Developmental studies showed that both GTBP and MSH2 levels were higher in nuclei isolated from the embryonic brain (day 16) than adult brain. However, this difference was not as dramatic as the difference in the number of proliferating cells. Levels of thymine DNA glycosylase (TDG), the enzyme which catalyzes the first step in short patch G:T mismatch repair, were also decreased in adult compared to embryonic brain. In the adult brain, MMR proteins were elevated in nuclear extracts enriched for neuronal nuclei. These results suggest that adult brain cells have the capacity to carry out DNA mismatch repair, in spite of a lack of ongoing DNA replication.  相似文献   

14.
15.
目的 探讨急性白血病患者组蛋白乙酰化修饰规律,并探索组蛋白乙酰化对错配修复基因hMSH2和hMLH1差异表达的调控作用.方法 用反转录-聚合酶链反应(RT-PCR)方法检测56例急性白血病患者和30名健康志愿者单个核细胞(MNC)的错配修复基因hMSH2和hMLH1 mRNA的表达,用Western blot法检测组蛋白H3、H4、去乙酰化酶(HDAC1)、hMSH2和hMLH1基因的蛋白表达情况.用组蛋白去乙酰转移酶抑制剂(TSA)诱导30例白血病患者MNC乙酰化,并检测处理后MNC的组蛋白H3、H4、HDAC1、hMSH2和hMLH1的表达状态变化.结果 急性白血病组的hMSH2和hMLH1、组蛋白H3、H4的蛋白表达量分别为0.4610±0.1211、0.4013±0.1143、0.4103±0.1241和0.4251±0.1081,均明显低于健康志愿者组的蛋白表达量(0.9461±0.1841、0.9960±0.2021、0.8971±0.1194、0.9513±0.1953),差异均有统计学意义(t值分别为3.341、3.935、2.843、3.575,P<0.05);而急性白血病患者组的HDAC1表达(0.8841±0.2018)高于健康志愿者组的表达量(0.5142±0.1340),差异有统计学意义(t=2.634,P<0.05);TSA作用于白血病单个核细胞后,组蛋白H3、H4、hMSH2和hMLH1的表达上调,分别比阴性对照组表达上调2.9倍、3.4倍、1.5倍和1.6倍,而HDAC1的蛋白表达出现明显的抑制,表达下调为阴性对照组的40%.结论 急性白血病患者的组蛋白乙酰化呈低表达现象,组蛋白乙酰化在急性白血病患者中对错配修复基因差异表达具有调控作用.  相似文献   

16.
CD38 is a bifunctional ectoenzyme, predominantly expressed on hematopoietic cells during differentiation, that catalyzes the synthesis (cyclase) and the degradation (hydrolase) of cyclic ADP-ribose (cADPR), a powerful calcium mobilizer from intracellular stores. Due to the well established role of calcium levels in the regulation of apoptosis, proliferation, and differentiation, the CD38/cADPR system seems to be a likely candidate involved in the control of these fundamental processes. The ectocellular localization of the cyclase activity, however, contrasts with the intracellular site of action of cADPR. Here we demonstrate that ectocellular expression of human CD38 in CD38(-) HeLa and 3T3 cells results in intracellular CD38 substrate (NAD+ + NADH) consumption and product (cADPR) accumulation. Furthermore, a causal relationship is established between presence of intracellular cADPR, partial depletion of thapsigargin-sensitive calcium stores, increase in basal free cytoplasmic calcium concentration, and decrease of cell doubling time. The significant shortening of the S phase in CD38(+) HeLa cells, as compared with controls, demonstrates an effect of intracellular cADPR on the mammalian cell cycle.  相似文献   

17.
In comparison to the well characterized role of the principal subunit of voltage-gated Ca2+ channels, the pore-forming, antagonist-binding alpha1 subunit, considerably less is understood about how beta subunits contribute to neuronal Ca2+ channel function. We studied the role of the Ca2+ channel beta3 subunit, the major Ca2+ channel beta subunit in neurons, by using a gene-targeting strategy. The beta3 deficient (beta3-/-) animals were indistinguishable from the wild type (wt) with no gross morphological or histological differences. However, in sympathetic beta3-/- neurons, the L- and N-type current was significantly reduced relative to wt. Voltage-dependent activation of P/Q-type Ca2+ channels was described by two Boltzmann components with different voltage dependence, analogous to the "reluctant" and "willing" states reported for N-type channels. The absence of the beta3 subunit was associated with a hyperpolarizing shift of the "reluctant" component of activation. Norepinephrine inhibited wt and beta3-/- neurons similarly but the voltage sensitive component was greater for N-type than P/Q-type Ca2+ channels. The reduction in the expression of N-type Ca2+ channels in the beta3-/- mice may be expected to impair Ca2+ entry and therefore synaptic transmission in these animals. This effect may be reversed, at least in part, by the increase in the proportion of P/Q channels activated at less depolarized voltage levels.  相似文献   

18.
The role, if any, that mitochondrial (mt) DNA alterations play in the carcinogenic process remains unclear. To determine whether mtDNA instability occurs in cancers, nine microsatellite sequences in the mtDNA were examined in 45 sporadic colorectal carcinomas. Alteration in a polycytidine (C)n tract within a non-coding displacement-loop (D-loop) region was detected in 20 carcinomas (44%), three of which also exhibited frameshift mutations in a polyadenosine (A)8 or polycytidine (C)6 tract within NADH dehydrogenase (ND) genes. Interestingly, all three mutant genes were predicted to encode truncated ND proteins, which lacked a large portion of the C-terminus. These results suggested that certain repair systems, like the mismatch repair systems in the nuclear genome, are required for mtDNA maintenance and that defects in these systems can lead to target mitochondrial gene mutations in colorectal carcinomas.  相似文献   

19.
The genomic loci for the mismatch repair genes hMSH2 and hMSH6 were mapped by fluorescence in situ hybridization, analysis of radiation hybrid panel markers, and linkage analysis of syntenic chromosome regions between human and mouse. Both genes were localized to chromosome 2p21, adjacent to the luteinizing hormone/choriogonadotropin receptor gene (LHCGR; 2p21), telomeric to the D2S123 polymorphic marker, and centromeric to the calmodulin-2 gene (CALM-2; 2p22-21) and son-of-sevenless gene (SOS; 2p22-21). The genomic locations of hMSH2 and hMSH6 appears to be within 1 Mb of each other because they could not be separated by interphase fluorescence in situ hybridization. These results clarify the position of the chromosome 2 hereditary nonpolyposis colorectal cancer locus, which was originally reported to be associated with an adjacent region (chromosome 2p14-16).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号