首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Optimizing NMR experimental parameters for high-throughput metabolic phenotyping requires careful examination of the total biochemical information obtainable from (1)H NMR data, which includes concentration and molecular dynamics information. Here we have applied two different types of mathematical transformation (calculation of the first derivative of the NMR spectrum and Gaussian shaping of the free-induction decay) to attenuate broad spectral features from macromolecules and enhance the signals of small molecules. By application of chemometric methods such as principal component analysis (PCA), orthogonal projections to latent structures discriminant analysis (O-PLS-DA) and statistical spectroscopic tools such as statistical total correlation spectroscopy (STOCSY), we show that these methods successfully identify the same potential biomarkers as spin-echo (1)H NMR spectra in which broad lines are suppressed via T2 relaxation editing. Finally, we applied these methods for identification of the metabolic phenotype of patients with type 2 diabetes. This "virtual" relaxation-edited spectroscopy (RESY) approach can be particularly useful for high-throughput screening of complex mixtures such as human plasma and may be useful for extraction of latent biochemical information from legacy or archived NMR data sets for which only standard 1D data sets exist.  相似文献   

2.
We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present.  相似文献   

3.
We present a method for the qualitative and quantitative study of transient metabolic flux of phage infection at the molecular level. The method is based on statistical total correlation spectroscopy (STOCSY) and partial least squares discriminant analysis (PLS-DA) applied to nuclear magnetic resonance (NMR) metabonomic data sets. An algorithm for this type of study is developed and demonstrated. The method has been implemented on (1)H NMR data sets of growth media in planktonic cultures of Pseudomonas aeruginosa infected with bacteriophage pf1. Transient metabolic flux of various important metabolites, identified by STOCSY and PLS-DA analysis applied to the NMR data set, are estimated at various stages of growth. The opportunistic and nosocomial pathogen P. aeruginosa is one of the best-studied model organism for bacterial biofilms. Complete information regarding metabolic connectivity of this system is not possible by conventional spectroscopic approach. Our study presents temporal comparative (1)H NMR metabonomic analyses of filamentous phage pf1 infection in planktonic cultures of P. aeruginosa K strain (PAK). We exemplify here the potential of STOCSY and PLS-DA tools to gain mechanistic insight into subtle changes and to determine the transient flux associated with metabolites following metabolic perturbations resulting from phage infection. Our study has given new avenues in correlating existing postgenomic data with current metabonomic results in P. aeruginosa biofilms research.  相似文献   

4.
The high level of complexity in nuclear magnetic resonance (NMR) metabolic spectroscopic data sets has fueled the development of experimental and mathematical techniques that enhance latent biomarker recovery and improve model interpretability. We previously showed that statistical total correlation spectroscopy (STOCSY) can be used to edit NMR spectra to remove drug metabolite signatures that obscure metabolic variation of diagnostic interest. Here, we extend this "STOCSY editing" concept to a generalized scaling procedure for NMR data that enhances recovery of latent biochemical information and improves biological classification and interpretation. We call this new procedure STOCSY-scaling (STOCSY(S)). STOCSY(S) exploits the fixed proportionality in a set of NMR spectra between resonances from the same molecule to suppress or enhance features correlated with a resonance of interest. We demonstrate this new approach using two exemplar data sets: (a) a streptozotocin rat model (n = 30) of type 1 diabetes and (b) a human epidemiological study utilizing plasma NMR spectra of patients with metabolic syndrome (n = 67). In both cases significant biomarker discovery improvement was observed by using STOCSY(S): the approach successfully suppressed interfering NMR signals from glucose and lactate that otherwise dominate the variation in the streptozotocin study, which then allowed recovery of biomarkers such as glycine, which were otherwise obscured. In the metabolic syndrome study, we used STOCSY(S) to enhance variation from the high-density lipoprotein cholesterol peak, improving the prediction of individuals with metabolic syndrome from controls in orthogonal projections to latent structures discriminant analysis models and facilitating the biological interpretation of the results. Thus, STOCSY(S) is a versatile technique that is applicable in any situation in which variation, either biological or otherwise, dominates a data set at the expense of more interesting or important features. This approach is generally appropriate for many types of NMR-based complex mixture analyses and hence for wider applications in bioanalytical science.  相似文献   

5.
Although NMR spectroscopic techniques coupled with multivariate statistics can yield much useful information for classifying biological samples based on metabolic profiles, biomarker identification remains a time-consuming and complex procedure involving separation methods, two-dimensional NMR, and other spectroscopic tools. We present a new approach to aid complex biomixture analysis that combines diffusion ordered (DO) NMR spectroscopy with statistical total correlation spectroscopy (STOCSY) and demonstrate its application in the characterization of urinary biomarkers and enhanced information recovery from plasma NMR spectra. This method relies on calculation and display of the covariance of signal intensities from the various nuclei on the same molecule across a series of spectra collected under different pulsed field gradient conditions that differentially attenuate the signal intensities according to translational molecular diffusion rates. We term this statistical diffusion-ordered spectroscopy (S-DOSY). We also have developed a new visualization tool in which the apparent diffusion coefficients from DO spectra are projected onto a 1D NMR spectrum (diffusion-ordered projection spectroscopy, DOPY). Both methods either alone or in combination have the potential for general applications to any complex mixture analysis where the sample contains compounds with a range of diffusion coefficients.  相似文献   

6.
Statistical total correlation spectroscopy (STOCSY) is a well-established and valuable method in the elucidation of both inter- and intrametabolite correlations in NMR metabonomic data sets. Here, the STOCSY approach is extended in a novel Iterative-STOCSY (I-STOCSY) tool in which correlations are calculated initially from a driver peak of interest and subsequently for all peaks identified as correlating with a correlation coefficient greater than a set threshold. Consequently, in a single automated run, the majority of information contained in multiple STOCSY calculations from all peaks recursively correlated to the original user defined driver peak of interest are recovered. In addition, highly correlating peaks are clustered into putative structurally related sets, and the results are presented in a fully interactive plot where each set is represented by a node; node-to-node connections are plotted alongside corresponding spectral data colored by the strength of connection, thus allowing the intuitive exploration of both inter- and intrametabolite connections. The I-STOCSY approach has been here applied to a (1)H NMR data set of 24 h postdose aqueous liver extracts from rats treated with the model hepatotoxin galactosamine and has been shown both to recover the previously deduced major metabolic effects of treatment and to generate new hypotheses even on this well-studied model system. I-STOCSY, thus, represents a significant advance in correlation based analysis and visualization, providing insight into inter- and intrametabolite relationships following metabolic perturbations.  相似文献   

7.
Previously we have demonstrated the use of 1H magic angle spinning (MAS) NMR spectroscopy for the topographical variations in functional metabolic signatures of intact human intestinal biopsy samples. Here we have analyzed a series of MAS 1H NMR spectra (spin-echo, one-dimensional, and diffusion-edited) and 31P-{1H} spectra and focused on analyzing the enhancement of information recovery by use of the statistical total correlation spectroscopy (STOCSY) method. We have applied a heterospectroscopic cross-examination performed on the same samples and between 1H and 31P-{1H} spectra (heteronuclear STOCSY) to recover latent metabolic information. We show that heterospectroscopic correlation can give new information on the molecular compartmentation of metabolites in intact tissues, including the statistical "isolation" of a phospholipid/triglyceride vesicle pool in intact tissue. The application of 31P-1H HET-STOCSY allowed the cross-assignment of major 31P signals to their equivalent 1H NMR spectra, e.g., for phosphorylcholine and phosphorylethanolamine. We also show pathway correlations, e.g., the ascorbate-glutathione pathway, in the STOCSY analysis of intact tissue spectra. These 31P-1H HET-STOCSY spectra also showed different topographical regions, particular for minor signals in different tissue microenvironments. This approach could be extended to allow the detection of altered distributions within metabolic subcompartments as well as conventional metabonomics concentration-based diagnostics.  相似文献   

8.
A new approach to enhancing information recovery from cryogenic probe "on-flow" LC-NMR spectroscopic analyses of complex biological mixtures is demonstrated using a variation on the statistical total correlation spectroscopy (STOCSY) method. Cryoflow probe technology enables sensitive and efficient NMR detection of metabolites on-flow, and the rapid spectral scanning allows multiple spectra to be collected over chromatographic peaks containing several species with similar, but nonidentical, retention times. This enables 1H NMR signal connectivities between close-eluting metabolites to be identified resulting in a "virtual" chromatographic resolution enhancement visualized directly in the NMR spectral projection. We demonstrate the applicability of the approach for structure assignment of drug and endogenous metabolites in urine. This approach is of wide general applicability to any complex mixture analysis problem involving chromatographic peak overlap and with particular application in metabolomics and metabonomics.  相似文献   

9.
10.
As part of our ongoing development of methods for enhanced biomarker information recovery from spectroscopic data we present the first example of a new hetero-nuclear statistical total correlation spectroscopy (HET-STOCSY) approach applied to intact tissue samples collected as part of a toxicological study. One-dimensional 1H and 31P-{1H} magic angle spinning (MAS) NMR spectra of intact liver samples after galactosamine (galN) treatment to rats and after cotreatment of galN plus uridine were collected at 275 K. Individual samples were also followed by 1H and 31P-{1H} MAS NMR through time generating time dependent modulations in metabolite signatures relating to toxicity. High-resolution 1H NMR spectra of urine and plasma and clinical chemical data were also collected to establish a biological framework in which to place these novel statistical heterospectroscopic data. In HET-STOCSY, calculation of the covariance between the 31P-{1H} and 1H NMR signals of phosphorus containing metabolites allows their molecular connectivities to be established and the construction of virtual two-dimensional heteronuclear correlation spectra that connect all protons on the molecule to the heteroatom. We show how HET-STOCSY applied to MAS NMR spectra of liver samples can be used to augment biomarker detection. This approach is generic and can be applied to correlate the covarying signals for any spin-active nuclei where there is parallel or serial collection of data.  相似文献   

11.
In general, applications of metabonomics using biofluid NMR spectroscopic analysis for probing abnormal biochemical profiles in disease or due to toxicity have all relied on the use of chemometric techniques for sample classification. However, the well-known variability of some chemical shifts in 1H NMR spectra of biofluids due to environmental differences such as pH variation, when coupled with the large number of variables in such spectra, has led to the situation where it is necessary to reduce the size of the spectra or to attempt to align the shifting peaks, to get more robust and interpretable chemometric models. Here, a new approach that avoids this problem is demonstrated and shows that, moreover, inclusion of variable peak position data can be beneficial and can lead to useful biochemical information. The interpretation of chemometric models using combined back-scaled loading plots and variable weights demonstrates that this peak position variation can be handled successfully and also often provides additional information on the physicochemical variations in metabonomic data sets.  相似文献   

12.
For the analysis of the spectra of complex biofluids, preprocessing methods play a crucial role in rendering the subsequent data analyses more robust and accurate. Normalization is a preprocessing method, which accounts for different dilutions of samples by scaling the spectra to the same virtual overall concentration. In the field of 1H NMR metabonomics integral normalization, which scales spectra to the same total integral, is the de facto standard. In this work, it is shown that integral normalization is a suboptimal method for normalizing spectra from metabonomic studies. Especially strong metabonomic changes, evident as massive amounts of single metabolites in samples, significantly hamper the integral normalization resulting in incorrectly scaled spectra. The probabilistic quotient normalization is introduced in this work. This method is based on the calculation of a most probable dilution factor by looking at the distribution of the quotients of the amplitudes of a test spectrum by those of a reference spectrum. Simulated spectra, spectra of urine samples from a metabonomic study with cyclosporin-A as the active compound, and spectra of more than 4000 samples of control animals demonstrate that the probabilistic quotient normalization is by far more robust and more accurate than the widespread integral normalization and vector length normalization.  相似文献   

13.
In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.  相似文献   

14.
Metabolite profiling relies on optimal precision of the acquired data, which requires, among others, a high signal-to-noise ratio (S/N). In addition, increased S/N will increase the likelihood of identification of new biomarkers. Here we introduce, for the first time in metabolite profiling studies by 1H NMR, an approach to enhance the precision of multivariate regression models by use of the FLIPSY (flip angle adjustable one-dimensional NOESY) pulse sequence, augmented by a homospoil pulse after the presaturation period to provide superior baseline quality. Unlike NOESYPRESAT, the standard one-dimensional (1D) sequence generally used in metabonomic studies, FLIPSY incorporates a variable flip angle, allowing use of the Ernst angle for excitation and thus optimization of S/N ratios according to spin lattice relaxation times (T1) of individual resonances. T1 values of metabolites present in human urine were determined by inversion-recovery experiments and subsequently used in calculations of optimal experimental conditions. Comparison of human urine analysis by the FLIPSY and NOESYPRESAT demonstrated an increase of S/N ratio in the former case that amounts to approximately 7% when measured for the hippurate doublet at delta 7.84. An orthogonal projection to latent structures discriminant analysis (O-PLS-DA) model exhibited superior discrimination between controls and simulated phenylketonuria urines when using data generated by the FLIPSY as compared to NOESYPRESAT.  相似文献   

15.
In an effort to address the variable correspondence problem across large sample cohorts common in metabolomic/metabonomic studies, we have developed a prealignment protocol that aims to generate spectral segments sharing a common target spectrum. Under the assumption that a single reference spectrum will not correctly represent all spectra of a data set, the goal of this approach is to perform local alignment corrections on spectral regions which share a common "most similar" spectrum. A natural beneficial outcome of this procedure is the automatic definition of spectral segments, a feature that is not common to all alignment methods. This protocol is shown to specifically improve the quality of alignment in (1)H NMR data sets exhibiting large intersample compositional variation (e.g., pH, ionic strength). As a proof-of-principle demonstration, we have utilized two recently developed alignment algorithms specific to NMR data, recursive segment-wise peak alignment and interval correlated shifting, and applied them to two data sets composed of 15 aqueous cell line extract and 20 human urine (1)H NMR profiles. Application of this protocol represents a fundamental shift from current alignment methodologies that seek to correct misalignments utilizing a single representative spectrum, with the added benefit that it can be appended to any alignment algorithm.  相似文献   

16.
The authors recently proposed an approach to the metabonomic analysis of biofluid mixtures based on the use of the selective TOCSY experiment (Sandusky, P.; Raftery, D. Anal. Chem. 2005, 77, 2455). This method has some significant advantages over standard metabonomic analysis. However, when analyzing overlapped components, the selective TOCSY method can suffer from the relatively high likelihood of simultaneous excitation of several spin systems at once. This multiple excitation can cause problems both with the purity of the individual TOCSY peaks observed and with their assignment into specific spin systems. To address this problem, the possibility of using a more selective excitation is initially explored. Unfortunately, in most cases, greater spin system selectivity can only be gained at the expense of sensitivity. This is obviously an unacceptable tradeoff when dealing with biofluid samples. However, the application of the Pearson product moment correlation to the TOCSY peak integral intensities provides a test for individual TOCSY peak purity and allows for the assignment of the peaks into spin systems. The specific application of this two-stage "semiselective" TOCSY method to rat and human urine is presented. Significantly, it is also demonstrated that the use of semiselective TOCSY spectra as data inputs for PCA calculations provides a more sensitive and reliable method of distinguishing small differences in biofluid composition than the standard metabonomic approach using complete 1D proton NMR spectra of urine samples.  相似文献   

17.
Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and biological studies in cellular biochemistry, metabolomics, and chemical ecology.  相似文献   

18.
Statistical heterospectroscopy (SHY) is a new statistical paradigm for the coanalysis of multispectroscopic data sets acquired on multiple samples. This method operates through the analysis of the intrinsic covariance between signal intensities in the same and related molecules measured by different techniques across cohorts of samples. The potential of SHY is illustrated using both 600-MHz 1H NMR and UPLC-TOFMS data obtained from control rat urine samples (n = 54) and from a corresponding hydrazine-treated group (n = 58). We show that direct cross-correlation of spectral parameters, viz. chemical shifts from NMR and m/z data from MS, is readily achievable for a variety of metabolites, which leads to improved efficiency of molecular biomarker identification. In addition to structure, higher level biological information can be obtained on metabolic pathway activity and connectivities by examination of different levels of the NMR to MS correlation and anticorrelation matrixes. The SHY approach is of general applicability to complex mixture analysis, if two or more independent spectroscopic data sets are available for any sample cohort. Biological applications of SHY as demonstrated here show promise as a new systems biology tool for biomarker recovery.  相似文献   

19.
We demonstrate here a new variant on a statistical spectroscopic method for recovering structural information on unstable intermediates formed in reaction mixtures. We exemplify this approach with respect to the internal acyl migration reactions of 1-beta-O-acyl glucuronides (AGs), which rearrange at neutral or slightly alkaline pH on a minute to hour time scale to yield a series of positional glucuronide ring isomers and alpha/beta anomers from the 1-beta (starting material), i.e. 2-beta, 2-alpha, 1-alpha, 3-beta, 3-alpha, and 4-beta, 4-alpha isomers together with the aglycon and alpha- and beta-glucuronic acid hydrolysis products. Multiple sequential 800 MHz cryoprobe (1)H NMR spectra (1D and 2D J-resolved, JRES) were collected on a 5.1 mM solution of a synthetic model drug glucuronide, 1-beta-O-acyl (S)-alpha-methyl phenylacetyl glucuronide (MPG) in 0.1 M sodium phosphate buffer in D2O at pD 7.4 over 18 h to monitor the reaction which leads to the formation of the eight positional isomers and hydrolysis products. As the reaction proceeds and new isomers form, the NMR signal intensities vary accordingly allowing the application of a novel kinetic variant on statistical total correlation spectroscopy (K-STOCSY) method to recover the connectivities between proton signals on the same reacting molecule based on their intensity covariance through time. We performed K-STOCSY analysis on both the standard 1D NMR spectra and the skyline projected singlets of the (1)H-(1)H JRES NMR spectra through time, i.e. the K-JRES-STOCSY experimental variant, which increases the effective spectral dispersion and is ideally suited for the analysis of heavily overlapped spin systems. High statistical correlations were observed between mutarotated alpha- and beta-anomers of individual positional isomers, as well as directly acyl migrated products and anticorrelation observed between signals from compounds that were being depleted as others increased, e.g. between the 1-beta and 2-alpha/2-beta isomers. This statistical kinetic approach enabled the recovery of structural connectivity information on all isomers allowing unequivocal resonance assignment, and this approach to spectroscopic information recovery has wider potential uses in the study of reactions that occur on the second-to-minute time scale in conditions where multiple sequential NMR spectra can be collected. JRES-STOCSY is also of potential use as a method for recovering spectroscopic information in highly overlapped NMR signals and spin systems in other types of complex mixture analysis.  相似文献   

20.
The deuterium/hydrogen (D/H)(i) ratio measurement by quantitative (2)H NMR spectroscopy is a method of choice for the analysis of kinetic isotopic effects associated with enzyme-catalyzed reactions during a biosynthetic pathway. However, the efficiency of the current isotropic (2)H-[(1)H] NMR can be limited by the rather small chemical shift dispersion of deuterium nuclei. In addition, this method does not allow the enantiotopic deuterons in prochiral molecules to be spectrally discriminated, hence precluding the quantification of isotopic fractionation on methylene prostereogenic sites. In this work, we explore another analytical strategy able to circumvent these disadvantages. This approach is based on the use of natural abundance (2)H 2D NMR experiments on solutes embedded in polypeptidic, chiral liquid crystalline solvent. Thus, we show that NMR in these oriented phases is a powerful way to separate deuterium signals on the basis of the quadrupolar interactions, providing a promising alternative to overcrowded (2)H NMR spectra obtained in liquid state. To illustrate our purpose, we have experimentally investigated the case of 1,1'-bis(phenylthio)hexane derived by cleavage from methyl linoleate of safflower. The (2)H NMR results in chiral liquid crystals are presented and discussed. We show, for the first time, that (D/H)(pro-R) and (D/H)(pro-S) can be measured at the same methylene position of a fatty acid chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号